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Os caminhos das raizes da funcao quadratica -
molde, modelo e estilo

The paths of the roots of the quadratic function -
mold, model and style

Resumo

Fixados dois coeficientes reais e variando-se o coeficiente real
remanescente da fung¢dao quadritica obtém-se o modelo dos
caminhos descritos pelas duas raizes da funcao no plano com-
plexo (Yamaoka, 2023). Um estilo € um conjunto de modelos
que tém relacdes entre si e compartilham o mesmo molde -
estrutura- (exceto o estilo 4 oriundo de f,(z) = az’,a € R,
constituido de Unico modelo). Determinamos o nimero de
componentes conexas do caminho de cada raiz por modelo.
Determinamos as componentes conexas de cada molde. Da-
mos exemplos dos moldes. Discutimos a continuidade e a
diferenciabilidade das duas raizes: elas sdo continuas em seus
dominios e as raizes simples sdo infinitamente diferencidveis
(com excec¢ao da raiz dupla nula infinitamente diferencidvel de
fu(z) = az’,a € R*, as demais raizes duplas que aparecem
no texto nao sao diferencidveis). O fundamento tedrico que da
suporte aos resultados aqui obtidos pertence a Andlise Classica.
Palavras-chave: raizes da funcdo quadrética; caminhos;
molde; modelo; estilo.

Abstract

By fixing two real coeflicients and varying the remaining real
coefficient of the quadratic function, the model of the paths
described by the two roots of the function in the complex plane
is obtained (Yamaoka, 2023). A style is a set of models that
are related to each other and share the same mold -structure-
(except the style 4 originating from f,(z) = az?, a € R*, consis-
ting of a single model). We determine the number of connected
components of the path of each root per model. We determine
the connected components of each mold. We give examples of
the molds. We discuss the continuity and differentiability of the
two roots: they are continuous in their domains and the simple
roots are infinitely differentiable (with the exception of the in-
finitely differentiable zero double root of f,(z) = az?,a € R*,
the other double roots that appear in the text are not differen-
tiable). The theoretical foundation that supports the results
obtained here belongs to Classical Analysis.

Keywords: roots of quadratic function; paths; mold; model;
style.
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1 Introducao

Seja f : C — Cdadapor f(z) = az> + bz +c,onde a € R*, b € R, ¢ € R. As raizes complexas

onde X1,Y1,X2,Y2 € R, i = \/—_1

Em |Yamaoka (2023), determinamos no plano C os caminhos descritos por ambas as raizes da
fungdo quadratica f(z) = az® + bz + ¢ quando fixamos dois dos trés coeficientes reais e variamos o
coeficiente remanescente. Ou seja, consideramos os trés casos:

(primeira raiz) e zp = xp + yai = (segunda raiz),

* Primeiro caso: bg e cq sdo fixados ; f,(z) = az> + boz + ¢, a € R* (9 subcasos).
* Segundo caso: ag # 0 e ¢ sdo fixados; f(z) = apz2 + bz +co, b € R (6 subcasos).
* Terceiro caso: ag # 0 e by sdo fixados; f.(z) = apz> + boz+ ¢, ¢ € R (6 subcasos).

Cada subcaso corresponde a um modelo dos caminhos descritos pelas duas raizes da funcao
quadratica no plano complexo. Um estilo € um conjunto de modelos que tém relacdes entre si, e
essas relagoes sao dadas pelas relacdes existentes entre as raizes de um modelo e as de outro. Um
molde € a estrutura comum aos modelos de um estilo.

Em |Yamaoka (2023) e neste trabalho percebemos como as expressoes algébricas das duas
raizes da fun¢do quadrética, que nos acompanham desde os idos do que hoje corresponde ao Ensino
Fundamental II, produzem resultados geométricos interessantes. Justamente por isso, € que podemos
citar duas aplicagdes deste trabalho no ambito educacional:

1) Ferramenta adicional de apoio ao professor no Ensino Médio. Quando determinamos os
caminhos das duas raizes, de certa forma estamos associando as ideias de movimento e de repouso
as duas raizes da fun¢do no plano. Isso pode contribuir para amenizar o impacto inicial quando da
introducao dos nimeros complexos ndo reais em sala de aula.

Tomemos como exemplo o modelo M[(by < 0, ¢o > 0)] (Figura[2). Para cada by < O e
para cada ¢y > 0, temos: quando a < 0, a 1? raiz (real) decresce em | — o0, 0[, e a 2° raiz (real)
cresce em |0, —co/bo[; quando 0 < a < b(z)/(4c0), a 1% raiz (real) decresce em [—2co/bg, +0[, e a
2% raiz (real) cresce em | — co/bg, —2co/bo]; e quando a > b(z)/(4co), a 1? raiz parte de —2co/bg e
percorre a semicircunferéncia superior em sentido anti-horario até pontos arbitrariamente proximos
de 0 (exceto 0), e a 2? raiz parte de —2co/b( e percorre a semicircunferéncia inferior em sentido
horério até pontos arbitrariamente proximos de 0 (exceto 0).

Uma aplicacdo para esse mesmo modelo € atribuir um valor a b9 < 0 e um a ¢p > 0, como
fizemos no exemplo de [Yamaoka (2023, p. 41). Em seguida, calculam-se —co/bg, —2co/bg €
b% /(4cp), e rotulam-se os pedacos dos caminhos das duas raizes. Entdo, o professor atribui um valor
aop # 0 ao coeficiente varidvel a e pede aos estudantes que indiquem em qual pedaco do caminho
(ou rétulo) cada uma das duas raizes estd localizada. Assim, o estudante podera perceber o percurso
que cada raiz fard para os valores 0 # a > ay.

No modelo M[(bg = -2, ¢p = 1)], o professor pode mostrar que, a medida que a cresce no
intervalo 0 < a < 1, sobre o eixo real as duas raizes se aproximam, se encontram no ponto (1,0)
-posi¢ao da raiz dupla- quando a = 1 e percorrem as semicircunferéncias quando a > 1.

2) Aplicacoes em cursos de Graduagdo. Este trabalho pode auxiliar no ensino de Andlise, de
Algebra e de Topologia basicas com o seu forte apelo geométrico.

No curso de Célculo 2 (mas também em fun¢des complexas), dentro do tépico de fun¢do de uma
varidvel real a valores em R?, pode-se provar a continuidade das duas raizes em seus dominios e, nos
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modelos nos quais as raizes duplas existem, a nao diferenciabilidade delas (exceto a diferenciabilidade
da raiz dupla nula em M[(bg = 0, co = 0)]). A continuidade das duas raizes em seus dominios,
bem como a nao diferenciabilidade das raizes duplas, sdo entdo ilustradas com as Figuras.

No curso de Anadlise, as Figuras podem funcionar como recurso ilustrativo para destacar as
propriedades notaveis dos caminhos das duas raizes, como as suas respectivas componentes conexas.
Ali, deve-se chamar a atencao para o seguinte fato: Em cada estilo a soma do niimero de componentes
conexas da 1°raiz é igual a soma do niimero de componentes conexas da 2° raiz. Ainda como recurso
instrucional, reunimos, numa tnica Figura ( tanto na Figura [38 quanto na Figura[39]), a ilustragdo
de conceitos basicos de Anélise e de Topologia envolvendo os caminhos das duas raizes.

A estrutura do texto é: nas secoes 5| definimos molde, modelo e estilo para os caminhos das
raizes da funcao quadratica para os trés casos mencionados acima e determinamos as componentes
conexas de cada molde - visualmente, € simples a identificacao destas componentes - baseados nos
fundamentos tedricos da se¢do [2]e nos de[6.3] Na secdo[2]especificamos os materiais utilizados nos
moldes, que, do ponto de vista matematico, abrangem algumas defini¢oes e resultados da teoria dos
conjuntos e da Andlise. Em estabelecemos as relagdes existentes entre dois modelos distintos
quaisquer de um mesmo estilo. Em fornecemos exemplos dos moldes. Em tratamos da
continuidade e da diferenciabilidade das duas raizes.

Nas Figuras, o simbolo o indica que o ponto ndo pertence ao caminho da raiz.

2 Materiais utilizados nos moldes

Definicao 2.1 O produto cartesiano de dois conjuntos A e B é definido como o conjunto de todos
os pontos (a, b) onde a esta em A e b esta em B. E denotado por AX B={(a,b) |a € Aeb € B}.

PHAXO=0,0xB=0, 0x0=0,onde 0 ¢é o conjunto vazio.
P2)(ANnB)X(CND)=(AxXxC)Nn(BxD),onde A, B,C e D sdo conjuntos.

Definicao 2.2 A reunido disjunta de n conjuntos (A1, As, ..., A,) é a unido de todos esses conjuntos,
mas com a condicdo de que eles nao tenham elementos em comum (ou seja,sejam disjuntos). Isso
significa que a intersegdo de quaisquer dois conjuntos A e Ay é sempre um conjunto vazio, quando
J#*k.

Agora expomos definicoes e resultados extraidos de |Lima (2000).

Definicao 2.3 “A bola aberta de centro a € R" e raio r > 0 é o conjunto dos pontos x € R" cuja
distancia ao ponto a é menor do que r. Notacdo: B(a;r)”(Lima, 2000, p. 10).

Definicao 2.4 Seja f : X — R" uma aplicagdo definida no conjunto X c R™. Diz-se
que f é continua no ponto a € X quando, para qualquer € > 0 dado, se pode obter 6 > 0
tal que todo ponto x € X cuja distancia ao ponto a seja menor do que  é transformado
por [ num ponto f(x) que dista de f(a) menos que € (Limal |2000, p. 21).

Corolario 2.1 Dadas f : X —» R™" e g : X — R", seja (f,g) : X — R™7" definida por
(f,ge)(x) = (f(x),g(x)). Entao (f,g) é continua se, e somente se, f e g sdo continuas (Lima,
2000, p. 25).
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Definicao 2.5 “Seja X c R". Um ponto a € X chama-se um ponto interior a X quando é centro de
alguma bola aberta contida em X ”(Limal 2000, p. 34).

Definicao 2.6 “Um conjunto X C R" chama-se aberto quando todos os seus pontos sao interio-
res”(Lima, 2000, p. 34).

Definicao 2.7 “Um ponto a € R" diz-se aderente a um conjunto X C R" quando é limite de uma
sequéncia de pontos desse conjunto” (Lima, 2000, p. 38).

Definicao 2.8 “O conjunto dos pontos aderentes a X chama-se o fecho de X e é indicado com a
notagdo X ”(Lima, 2000, p. 38).

Definicao 2.9 “Um conjunto X C R" chama-se fechado quando contém todos seus pontos aderentes,
isto é, quando X = X ”(Lima, 2000, p. 39).

Definicao 2.10 “Uma cisao de um subconjunto X C R" é uma decomposicido X = A U B, onde
A N B =0 e os conjuntos A,B sao ambos abertos e fechados em X’ (Lima, |2000, p. 54).

“Todo conjunto X C R" admite pelo menos a cisdo trivial X = X U 0”(Lima, [2000, p. 54).

Definicao 2.11 “Um conjunto X C R" chama-se conexo quando ndo admite outra cisdo além da
trivial”(Lima, 2000, p. 54).

Exemplo 2.1 “O conjunto vazio e um ponto {x} sdo exemplos débvios de conjuntos conexos”(Lima,
2000, p. 54).

Definicao 2.12 “Quando existir uma cisao ndo trivial X = AUB, diremos que X é desconexo”(Lima,
2000, p. 54).

Teorema 2.1 “Um subconjunto X C R é conexo se, e somente se, é um intervalo”(ILima, |2000, p.
55).

Teorema 2.2 “A imagem de um conjunto conexo por uma aplicacdo continua é um conjunto co-
nexo”(Lima, 12000, p. 55).

Teorema 2.3 “A reunido de uma familia de conjuntos conexos com um ponto em comum é um
conjunto conexo” (ILimal 2000, p. 57).

Corolario 2.2 “Dados X ¢ R™ e Y C R", o produto cartesiano X XY C R™" ¢ conexo se, e
somente se, X e Y sdo conexos”(ILima, 2000, p. 59).

Corolario 2.3 “O fecho de um conjunto conexo é conexo”(Lima, 2000, p. 59).

“Todo conjunto X C R” se exprime como reunido disjunta de subconjuntos conexos maximos,
chamados componentes conexas de X”’(Lima, 2000, p. 63).

A partir de agora damos inicio a conceituacdo de moldes, modelos e estilos para os caminhos
das duas raizes quando fixamos dois coeficientes reais da fung¢ao quadratica e variamos o coeficiente
real remanescente.
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3 Primeiro caso

Em [Yamaokal (2023)), para o subcaso (bg > 0, ¢o > 0) determinamos os caminhos da primeira
e da segunda raizes representados na Figura [[(modelo) e denotada M[(by > 0, ¢¢ > 0)]. Para
(bp <0, co > 0), eles estdo na Figura 2{modelo) e a denotamos M[(by < 0, ¢o > 0)]. Para
(bop > 0, ¢ < 0), eles estdo na Figura 3(modelo) e a denotamos M[(by > 0, ¢o < 0)]. Para
(bp <0, ¢ < 0), os caminhos estdo na Figura[d] (modelo) denotada M[(by <0, ¢ < 0)].

Figura 1: M[(bg > 0, ¢ > 0)] Figura 2: M[(bg <0, co > 0)]

L I Primeira raiz I Primeira raiz
Segunda raiz Segunda raiz

0<a<ﬂ
< -
2%
b02
b
4cq
S
bpT- """ 77~ bpT T 7
Fonte: Yamaoka (2023, p. 41) Fonte: Yamaoka (2023, p. 42)
Figura 3: M[(bg > 0, co < 0)] Figura 4: M[(by < 0, c¢ < 0)]
o EEEEEEEDP Primeira raiz ar¥o Primeira raiz
by Segunda raiz b Segunda raiz

bo

-_— g < <a<0
4c, a<o 4c,
N,
Y rd
2¢,
Raiz dupla b
I_OI
2
3
S -
b, T b. T

Fonte: Yamaoka (2023, p. 42) Fonte: Yamaoka (2023, p. 43)

Definamos o Estilo 1 como o conjunto formado pelos 4 modelos das Figuras [I] a [ (veja [6.1]
al)). Observamos que estes 4 modelos apresentam uma “estrutura”’comum (molde 1) sobre a qual
repousam os caminhos das duas raizes, exposta na Figura , e a denotamos MOL[(bo >0, co>0)
,(b()<0, C()>0),(b0>0, C()<O),(b()<0, C0<0)

Estudemos o nimero de componentes conexas do molde 1 da Figura [5 (veja também [6.3).
Imaginemos que o eixo x esteja orientado para a esquerda e o eixo y para cima na Figura[5] (O
resultado é o0 mesmo supondo o eixo x orientado para a direita.)
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Figura 5: MOL[(bo > 0, ¢ > 0), (bg <0, co > 0), (bo >0, co <0), (bo <0, co < 0)]

Fonte: elaborada pelo autor

Pelo Teorema [2.1, ]0, +oo] ,]—2—2,0[ ,[ 2¢ @[ ,]—oo,—zb—coo] sao conexos. Do Exemplo

- by’ _bo
, {0} € R € conexo. Segue do Coroldrio ﬁ que C; =]0,+00[x{0}, C; = ]—2—3,0[ x {0},
—Zb—co", —Z—g[ x {0} e ]—oo, —Zb—coo] x {0} sdo conexos.

2 2
Seja f : [—%",O[ — R? dada por f(x) = x,\/(Z—‘(’)) - (x + Z—g) ) . Como as fungdes reais x

2 2
e \/ (ZTO)) - (x + Z—g) sdo continuas, vem do Coroldrio que f é continua. Como [_szOO’ O[ é
conexo (pelo Teorema b e f € continua, segue do Teorema que f ([_ZbLOo’ 0 [) é conexo.

2

Seja fi : [—Zb—?,O[ — R? dada por fi(x) = (x, _\/(Z_g)z_ (x+2—?)) Como [_@ 0[ é

by’
. ., 2 P
conexo e f1 € continua, segue novamente do Teorema que fl ([_bL()O’ 0 [) € conexo.

Pelo Teorema|2.3| a reuniao C3 dos subconjuntos conexos [—%, —% [ x {0}, ]—oo, —%] x {0},
0 0 0

_2a —2¢ _2¢ _2% & i &
f ([ Do ,O[) e fi ( Do ,OD com 0 ponto comum ( Do ,O), onde b, © araiz dupla, € um
subconjunto conexo.

Provemos agora que C; N Cy = 0,Vj, k € {1,2,3}, # k.

CinG = (10.+[x{0}) N (] = co/bo, 0[x{0})
"2 (10, +00[N] = co/bo. 0) x ({0} N {0})
= 0x{0}
P) 0

Ci N C3= (]0,+00[x{0}) N (([-2c0/bo, —co/bo[x{0}) U (] — 00, =2c0/bo] % {0})
Uf([=2co/bo,0[) U fi([-2c0/bo,0[))
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CinCs = ((10,+00[x{0}) N ([-2c0/bo, —co/bo[*{0}))
U ((10, +00[x{0}) N (] = 00, =2c0/bo] X {0}))
U ((10, +e0[x{0}) N f([=2c0/bo,0[))
U ((10, +0o[x{0}) N f1([=2c0/bo, 0[))

((10, +0o[N[=2c0/bo, —co/bo[) X {0}) U ((]0O, +oo[N] — 00, =2¢¢/bo]) x {0})

U 0 R} N €0 : i i 2¢0 0

{(x,0)|x e R}} X, (b_o) — (x+ b_o) |x € [—b—o, [

Ul{(x,0)|lx e R*} N )’ )’ 20
{(x,0)|x e R}} X, — (b_o) — (x+ b_o) lx € [—b—o, [

= (0x{0}) U (0x{0})
U ({(x, 0)lx e R;} N {(x, V) lx e [—i—,O[})

0
U ({(x, 0)lx e R:} N {(x, —V) lx €

2c0
,0[ =0
by’ [

P2)

D QUOUOUB , pois RiN

= 0.

€G3 2 (] = co/bo, O[N[=2c0/bo. —co/bo[) x {0})U((] = co/bo, O[N] — 00, —2¢0/bo]) x {0})

Ak [T 2T )
(o el [ T )

= (0 x {0}) U (0 x {0})

offeonse Frvelio {5 ol o« pRol o fevmee 5ol
ffeone< ol o (5ol e ome< ol o ne [ 55of )

D Ou0uU@UO)U@UOB) . pois —2co/bo €] - co/bo.0] e T #0.

=0.

Portanto, m; = C; U C; U C3 € a reunido disjunta das componentes conexas C, C; e C3.

Em Yamaoka (2023)), para o subcaso (bg = 0, c¢ > 0) determinamos os caminhos da primeira
e da segunda raizes representados na Figura [f(modelo) e a denotamos M[(bg =0, ¢o > 0)]. Para
(bo =0, co < 0),0s caminhos estdo na Figura[7/(modelo) e a denotamos M[(bo =0, co < 0)].
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Figura 6: M[(bg =0, co > 0)] Figura 7: M[(bg =0, co < 0)]

Primeira raiz Y Primeira raiz Y

Segunda raiz Segunda raiz
a>0 a<o0

a<o a<o0 a>0 a>0
0 X 0 X
a>0 a<o
Fonte: Yamaoka (2023, p. 44) Fonte: Yamaoka (2023, p. 45)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras [] e [7] (veja
a2)). Observamos que estes 2 modelos apresentam uma “estrutura”comum (molde 2) sobre a qual
repousam os caminhos das duas raizes, exposta na Figura e a denotamos MOL[(bo =0, ¢y > 0)
,(b()ZO, C()<O)] .

Examinemos o nimero de componentes conexas do molde 2 da Figura [§] (veja também [6.3)).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura

Figura 8: MOL[(bg =0, co > 0), (bo=0, co < 0)]

Fonte: elaborada pelo autor

Pelo Teorema[2.1] | — 00, 0[ e ]O, +co[ s@o conexos. Do Exemplo[2.1] {0} c R é conexo. Segue
do Coroldrio[2.2|que C; ] 00, 0[x{0}, C3 =]0, +o0[x{0}, C3 = {0} x] —00,0[ & C4 = {0}x]0, +oo]
sao conexos. Agora, my = C; U Cy U C3 U Cy € reunido disjunta de Cy, Ca, C3, Cy, pois

C1NCy = (] —00,0[x{0}) N (10, +oo[x{0}) "2 (] = 00,0[N]0, +o0[) x ({0} N {0}) = 0x {0} ‘= 0.
C1NCs = (] - 0,0[x{0}) N ({0}x] —0,0[) "2 (] = 00,0[N{0}) x ({0}n] = 0,0[) = Ox 0 = 0.
C1 0 Cy = (] = 00,0[x{0}) N ({0}x]0, +o0[) ‘=" (] = 00,0[N{0}) x ({0}N]0, +o0) = O x 0 = 0.

C2 0 C3 = (10, +00[x{0}) N ({0}x] — [, 0) ‘=’ (10, +00[N{0}) x ({0}N] —0,0[) =0 x 0 = 0.
C2 N Cy = (10, +00[x{0}) N ({0}x]0, +o0[) "2’ (10, +e0[N{0}) x ({0}N]0, +o0[) = O x 0 "2 0.

P2 P.1)

C30 Cy = ({0}x] —0,00) N ({0}x]0, +00[) "2’ ({0} N{0}) X (] = 00,0[N]0, +c0[) = {0} x 0 =’ 0.

Em Yamaoka (2023)), para o subcaso (bg > 0, co = 0) determinamos os caminhos da primeira

e da segunda raizes representados na Figura [0(modelo) e a denotamos M[(bg > 0, ¢o = 0)]. Para
(bo < 0, co = 0),0s caminhos estdo na Figura[I0{modelo) e a denotamos M[(bg < 0, ¢ = 0)].
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Figura 9: M[(bg > 0, co = 0)] Figura 10: M[(bo < 0, ¢co = 0)]
Primeira raiz Primeira raiz
Segunda raiz NY Segunda raiz ANY
a>0 a>0|a<0 a<0 a<0 a<0 a>0 a>0
N X X
= * > <= bCe >
/I 0 0
Primeira raiz

Fonte: Yamaoka (2023, p. 46) Fonte: Yamaoka (2023, p. 46)

Definamos o Estilo 3 como o conjunto formado pelos 2 modelos das Figuras [9] e [10] (veja
a3)). Observamos que estes 2 modelos apresentam uma “estrutura”comum (molde 3) sobre a qual
repousam os caminhos das duas raizes, exposta na Figura e adenotamos MOL [ (bg > 0, ¢o =0)
,(bo<0, co=0)].

Estudemos o nimero de componentes conexas do molde 3 da Figura [[] (veja também [6.3).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura

Figura 11: MOL[(bg >0, co=0), (bo <0, co =0)]

@
0

Fonte: elaborada pelo autor

Definimos C| =] — o0, 0[ e C; =]0, +oo[. Note que C; U C, € o conjunto sobre o qual repousa o
caminho de uma das duas raizes; a outra raiz é o conjunto {0}. Pelo Coroldrio C) =] —0,0] é
conexo e Cy = [0, +0o[ é conexo. Pelo Teorema areunido m3 dos subconjuntos conexos CieC
com o ponto comum {0} é um conjunto conexo. Portanto, o eixo real é a tinica componente conexa
de ms.

Em Yamaoka (2023)), para o subcaso (b9 = 0, cg = 0) determinamos os caminhos da primeira
e da segunda raizes (z)(a) = zz2(a) = 0,Va € R*), cujo modelo é denotado M[(by = 0, co = 0)].
Neste caso, o molde 4, denotado MOL[(bo =0, ¢cp= 0)], estd representado na Figura

Figura 12: MOL[(bo =0, ¢p = 0)]

®
0

Fonte: elaborada pelo autor

Definamos o Estilo 4 como o conjunto constituido pelo modelo denotado M[(bg =0, ¢ = 0)].
O conjunto m4 = {0} € a Ginica componente conexa (veja também [6.3)).

4 Segundo caso

Em Yamaoka (2023)), para o subcaso (ag > 0, co > 0) determinamos os caminhos da primeira
e da segunda raizes representados na Figura[[3(modelo) e a denotamos M[(ap > 0, c¢o > 0)]. Para
(ap <0, co < 0),0s caminhos estdo na Figura[I4(modelo) e denotada M[(ap < 0, co < 0)].
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Figura 13: M[(ap > 0, co > 0)] Figura 14: M[(ap <0, co < 0)]

Primeira raiz y Segunda raiz Primeira raiz \ Segunda raiz

0<b<2fagc, —> < "2fagco<b<0 3 [arctcb<o —> <~ 0<b <2fascg

< N
Y ’
- [Q -[a
LV, A LV,
b=2fa,c, b=-2fa,c, b=2/a,c,

<— 0<h<2Jagcq

Fonte: Yamaoka (2023, p. 50) Fonte: Yamaoka (2023, p. 51)

Definamos o Estilo 1 como o conjunto formado pelos 2 modelos das Figuras[I3]e[I4](veja[6.1]b1)).
Os 2 modelos apresentam uma “estrutura”comum (molde 1) sobre a qual repousam os caminhos das
duas raizes, que € exposta na Figurae denotada MOL[(aO >0, ¢co> O) , (ao <0, ¢co< 0)]

Examinemos o nimero de componentes conexas do molde 1 da Figura[I3](veja também[6.3). O
eixo x deve estar orientado para a direita e o eixo y para cima na Figura

Figura 15: MOL[(ag > 0, ¢ > 0) , (ag <0, co < 0)]

o0

Fonte: elaborada pelo autor

Sejam C; =] — o0, —y/co/ao] X {0}, Ca = [—+/co/ao, 0[X{0}, C3 =]0,+/co/ao] x {0},Cy =
[Vco/ag, +o0[x{0}. Pelo Teorema]—OO, —+/co/ao], [/ co/ao, 0], ]0, \/co/ao] e [\/co/ao, +oo|

sdo conexos. Do Exemplo 2.1} {0} c R é conexo. Resulta do Corolério 2.2]que Cj, C2, C3 e C4 530
COnexos.

Seja f : [=+/co/ao, Vco/ao] — R? dada por f(x) = (x, V(co/ag) — xz). Como as fungdes reais

x e/ (co/ap) — x?% sdo continuas, vem do Corolérioque f € continua. Como [—+/co/ag, \co/ao]
€ conexo e f € continua, segue do Teoremaque f([=+/co/ap, \co/ao]) é conexo.

Seja fi + [~veo/ao, veo ol = B2, fi(x) = (x, ~(eo/ag) = x2). Como [~eo/av, o/ a]
€ conexo e f] é continua, segue novamente do Teorema que fi([—+/co/ao,\co/ap]) € conexo.
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Pelo Teorema n a reunido aux dos subconjuntos conexos Ci, Cy, f([—+/co/ao,\co/ao]) e
fi(l=+co/ao, yeco/aol) -isto €, | — oo, —+/co/ao] X {0}, [=+/co/ao, 0[X{0}, f ([-+/co/ao, y/co/aol)
e f1([=+/co/ao,\co/ap]) - com o ponto comum (—+/co/agp, 0), onde —+/co/ag é uma raiz dupla, é
um conjunto conexo.

Finalmente, pelo Teorema [2.3] n a reunido m; dos subconjuntos conexos C3, Cy4, aux - isto €,

10, v/co/aol x{0}, [y/co/ao, +oo[x{0}, CtUCo U f([=+/co/ao, yco/aol) U fi([-+co/ao, v co/aol)
- com o ponto comum (+/co/ag, 0), onde +/co/agp é uma raiz dupla, € um conjunto conexo. Portanto,
m; € a inica componente conexa.

Em Yamaoka (2023), para o subcaso (ag > 0, co < 0) determinamos os caminhos da primeira
e da segunda raizes representados na Figura [[6(modelo) e a denotamos M[(ap > 0, ¢ < 0)]. Para
(ap <0, co > 0),0s caminhos estdo na Figura [[7(modelo) e denotada M[(ap <0, ¢o > 0)].

Figura 16: M[(ap > 0, co < 0)] Figura 17: M[(ap <0, co > 0)]
v . ) y i
Segunda raiz Primeira raiz Primeira raiz Segunda raiz
b>0 b<0 b>0 b<0 b:.O | b>0 bio | bio X
e < < < X - ‘ 0o ~ e

= 0 Co - L& G
/& V" a, VB %o
b =0 b =0 b =0 b =0

Fonte: Yamaoka (2023, p. 52) Fonte: Yamaoka (2023, p. 52)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras[T6]e[I7|(vejal6.1]b2)).
Os 2 modelos apresentam uma “estrutura”’comum (molde 2) sobre a qual repousam os caminhos das
duas raizes, que é exposta na Figurae denotada MOL[(ao >0, ¢c0<0),(a<0, co> 0)]

Examinemos o nimero de componentes conexas do molde 2 da Figura [1§] (veja também [6.3)).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura|[I§]

Figura 18: MOL (a9 > 0, c9 <0), (a0 <0, co > 0)]

e
S

0
Fonte: elaborada pelo autor

Seja my =] — 00,0[U]0, +co[. Pelo Teorema ] = 00,0[ e ]0,+oco[ sdo conexos. Como
| — 00,0[N]0, +oo[= 0 resulta que m, € a reunido disjunta das componentes conexas | — co,0[ e
10, +co].

Em |Yamaokal (2023)), para o subcaso (ag > 0, co = 0) determinamos os caminhos da primeira e
da segunda raizes representados nas Figuras[I9]e[20(modelo) e as denotamos M[(ag > 0, c¢o = 0)].
Para (ap < 0, co = 0), eles estdo nas Figuras[21]e[22modelo) e as denotamos M[(ap < 0, ¢o = 0)].
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Figura 19: M[(ag > 0, co = 0)] Figura 20: M[(ap > 0, co = 0)]
Primeira raiz y Segunda raiz Y
b>0
\| b<0 ) b>0 I[b<OX
0N
p=0"|" b=0

Fonte: Yamaoka (2023, p. 53) Fonte: Yamaoka (2023, p. 53)

Figura 21: M[(ap < 0, ¢o = 0)] Figura 22: M[(ap < 0, ¢o = 0)]
Primeira raiz y Segunda raiz Y
b<O b>0 b<0 b>0
‘I/ X \I ~ X
DEN /|0
b=0 b=0
Fonte: Yamaoka (2023, p. 54) Fonte: Yamaoka (2023, p. 54)

Definamos o Estilo 3 como o conjunto formado pelo modelo das Figuras[I9]e[20]e pelo modelo das
Figuras[21]e[22](veja[6.1|b3)). Observamos que estes 2 modelos apresentam uma “estrutura”comum
(molde 3) sobre a qual repousam os caminhos das duas raizes, que é exposta na Figura 23] e a
denotamos MOL [(ag > 0, co=0), (ag <0, co=0)].

Examinemos o nimero de componentes conexas do molde 3 da Figura 23] (veja também [6.3).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura[23]

Figura 23: MOL[(ag > 0, ¢9=0), (ap <0, co =0)]

&
0

Fonte: elaborada pelo autor

Sejam ] — o0, 0] e [0, +oo[. Pelo Teoremal[2.1] ] — c0,0] e [0, +oo[ sdo conexos. Pelo Teorema
a reunido m3 dos subconjuntos conexos | — o0, 0] e [0, +oo[ com o ponto comum O - raiz dupla
- € um conjunto conexo, ou seja, m3 = R € a tinica componente conexa.

5 Terceiro caso

Em Yamaoka (2023), para o subcaso (ag > 0, by > 0) determinamos os caminhos da primeira
e da segunda raizes e o denotamos como modelo M[(ag > 0, by > 0)]. Para (a9 > 0, by < 0),
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denotamos o subcaso como modelo M[(ag > 0, bg < 0)]. Para (ag < 0, by < 0), denotamos o
subcaso como modelo M[(ag < 0, by < 0)]. E para (ag < 0, bg > 0), denotamos o subcaso como
modelo M[(ag < 0, by > 0)].
A Figura [24] representa modelos simétricos correspondentes. Olhando de frente, quando o eixo
y estd a direita, temos M[(ag > 0, bg > 0)]. Quando estd a esquerda, temos M[(ag > 0, bg < 0)].
A Figura 23] representa modelos simétricos correspondentes. Olhando de frente, quando o eixo
y estd a direita, temos M[(ag < 0, by < 0)]. Quando estd a esquerda, temos M[(ag < 0, by > 0)].

Figura 24: Figura 25:
Modelos simétricos 1 Modelos simétricos 2
N ba Primeira raiz - ; Primeira raiz
c>— i c< — i
4a, Segunda raiz 4a, Segunda raiz
y y y
- A ) , A N ,
bO I I bO bO I I bO
c<— | I c<— c>— | I Cc>—
Dot LM P | o 4 Ja
ey P
Raiz dupla ao Raiz dupla 23,
—1 5 —1 >
bO bO
C T e— C T —
2 4a, 2 4a,
c>——2 c<—=2
4a, 4a,
Fonte: elaborada pelo autor Fonte: elaborada pelo autor

Definamos o Estilo 1 como o conjunto formado pelos 4 modelos das Figuras[24]e[25](veja[6.1]c1)).
Estes 4 modelos apresentam uma “estrutura”’comum (molde 1) sobre a qual repousam os caminhos
das duas raizes, exposta na Figura 26/ e denotada MOL[(ag > 0, bg > 0) , (ap > 0, by < 0) ,
(a0<0, b0<0),(a0<0, b0>0) .

Estudemos o nimero de componentes conexas do molde 1 da Figura 26| (veja também [6.3).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura[26]

Figura 26: MOL[(ag > 0, by > 0) , (ag > 0, by < 0), (ap <0, by <0), (ap <0, by > 0) |

Fonte: elaborada pelo autor

Pelo Teorema [2.1] | — oo, —bo/2ag], [—bo/2ap,+o[, | — 00,0[ e ]0,+oco[ s@o conexos. Pelo
Corolario ] — ,0] e [0, +0co[ sdo conexos. Do Exemplo {0} € R e {-bg/2ap} sdo
conexos. Segue do Corolario que C; =] — 00, —bg/2ap] x {0}, C2 = [—-bo/2ag,+oo[x{0},
Csz = {=bp/2a0}Xx] — ,0] e C4 = {=bg/2ap} X [0, +oo[ s@o conexos. Pelo Teorema|2.3| a reunido
m dos subconjuntos conexos Cy, C,, C3 e C4 com o ponto comum (—bg/2ag,0), onde —bg/2a € a
raiz dupla, € um conjunto conexo, ou seja, m| € a inica componente conexa.
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Em Yamaoka (2023)), para o subcaso (ag > 0, bg = 0) determinamos os caminhos da primeira
e da segunda raizes representados na Figura 27(modelo) denotada M[(ap > 0, by = 0)]. Para
(ap < 0, by =0),0s caminhos estao na Figura |7_gkm0delo) denotada M[(ag < 0, bg =0)].

Figura 27: Figura 28:
Ml(ao > 0, by =0)] Ml(ap <0, b = 0)]
y Primeira raiz y Primeira raiz
Segunda raiz Segunda raiz
c>0 A c<0
c<0 c<0 c>0 c>0
. X ® X
0 0
Raiz dupla c=0 Raiz dupla lc_'= 0
c>0 c<0
Fonte: Yamaoka (2023, p. 58) Fonte: Yamaoka (2023, p. 58)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras27]e[28](veja[6.1]c2)).
Os 2 modelos apresentam uma “‘estrutura”’comum (molde 2) sobre a qual repousam os caminhos das
duas raizes, exposta na Figurae denotada MOL[(ao >0, by = O) , (ao <0, by = O)]

Estudemos o nimero de componentes conexas do molde 2 da Figura 29| (veja também [6.3).
Imaginemos que o eixo x esteja orientado para a direita e o eixo y para cima na Figura

Pelo Teorema 2.1, | — 00,0], [0, +0[, | — o0,0[ e ]O, +oo[ s@o conexos. Pelo Corolario 0
fecho de | — 0, 0[, que € | — o0, 0], e o fecho de ]0, +co[, que € [0, +oo[, sdo conexos. Do Exemplo
{0} c R é conexo. Segue do Corolario que C; =] — 0,0] x {0}, C; = [0, +oo[x{0},
C3; = {0}X] — 0,0] e C4 = {0} X [0,+o0[ s@0 conexos. Pelo Teorema a reuniao myp dos
subconjuntos conexos Cy, Cp, C3 e C4 com o ponto comum (0, 0), onde o primeiro 0 € a raiz dupla,
€ um conjunto conexo, ou seja, n, € a inica componente conexa.

Figura 29: MOL|[ (ag > 0, by =0) , (ag <0, by =0) |

Fonte: elaborada pelo autor
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6 Apéndice

6.1 Estilos

Aqui estabelecemos as relagoes existentes entre dois modelos distintos quaisquer de um mesmo
estilo.

a) Primeiro caso
al) Estilo 1

Definamos

modelo 1: M[(bg; > 0, co1 > 0)]
modelo 2 : M[(bgp, < 0, coz > 0)]
modelo 3 : M[(bg3 > 0, co3 < 0)]
modelo 4 : M[(bos <0, cos < 0)].

Facamos

box = =bo1 , co2 = co1
boz = bo1 , co3 = —co1
bos = —bo1 , cos = —co1

boz = =bg , co3 = —co2
bos = b2 , coa = —c2

bos = =bo3 , cos = €03 -
Usemos a notacao z;, j = 1,2, k =1,2,3,4, para denotar a j-ésima raiz do modelo k.

Existem (‘2‘) = 6 relagdes. Temos, Ya € R*,

z12(a) =-221(a) e z22(a) =-z11(a) (Relagdo entre 0 modelo 1 e o modelo 2)
z13(a) =—z11(-a) e z223(a) =-z21(—a) (Relagdo entre 0 modelo 1 e o modelo 3)
z14(a) =z21(-a) e zp4(a) =z11(—a) (Relacdo entre o modelo 1 e o modelo 4)

z13(a) =z02(—-a) e z23(a) =z12(—a) (Relacdo entre o modelo 2 e o modelo 3)
z14(a) = —z12(—a) e z24(a) =—-z22(—a) (Relagdo entre 0 modelo 2 e o modelo 4)

z14(a) = —z23(a) e 2z24(a) = -z13(a) (Relagdo entre o modelo 3 e o modelo 4).

Provemos a relag@o entre o modelo 1 e o modelo 2 acima (as demais sao similares): Va € R*,

—by + 4 /b(z)z —4acy  bop + 4 /b(zn —4acq —bo1 — /bél —4acy
z12(a) = 7 = 2a =- 2a = ~22,1(a) »
ey
by - \/m bo1 - \/m —bo1 + \/m
22(a) = 2a - 2a - 2a - Tl
2)
a2) Estilo 2
Definamos
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modelo 5 : M[(bgs =0, cos > 0)]
modelo 6 : M[(b06 =0, co6 <0)].

Facamos

bos = bos , co6 = —Co5 -

Usemos a nota¢do z;x, j = 1,2, k = 35,6, para denotar a j-ésima raiz do modelo k.
Existe (g) = 1 relagdo. Temos, Va € R*,

z16(a) =z225(-a) = —z15(-a) e z226(a) =2z15(-a) =-z225(-a) .

a3) Estilo 3

Definamos
modelo 7 : M[(bg7 > 0, cg7 = 0)]
modelo 8 : M[(bog < 0, cog =0)].

Facamos
bog = —bo7 , co8 = Co7 -
Usemos a notagdo z;, j = 1,2, k =7,8, para denotar a j-ésima raiz do modelo k.

Existe (g) = 1 relagdo. Temos, Va € R*,
z1g(a) =—z27(a) e z8(a)=-z17(a) =0 .

b) Segundo caso
b1) Estilo 1

Definamos
modelo 1 : M[(ag; > 0, co1 > 0)]
modelo 2 : M[(a02 <0 , Cop < 0)] .

Facamos
ap2 = —aot , o2 = —Cot -

Usemos a nota¢do z;x, j = 1,2, k = 1,2, para denotar a j-€sima raiz do modelo k.

Existe (g) = 1 relacdo. Temos, Vb € R,
212(b) = =z11(b) e z222(b) =-22,1(b) .
b2) Estilo 2

Definamos
modelo 3 : M[(ag3; > 0, co3 < 0)]
modelo 4 : M[(ags <0, cos > 0)] .

Facamos
ap4 = —aop3 , Co4 = —€o3 -

Usemos a nota¢do z;, j = 1,2, k = 3,4, para denotar a j-€ésima raiz do modelo k.

Existe (%) = 1 relacdo. Temos, Vb € R,
214(b) = —z13(b) e z24(b) = -223(b) .

b3) Estilo 3
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Definamos

modelo 5 : M[(a()5 >0, cos5 = O)]

modelo 6 : M[(agg < 0, cog =0)] .

Facamos

ape = —aps , cos = cos = 0.

Usemos a notagdo z;x, j = 1,2, k = 35,6, para denotar a j-ésima raiz do modelo k.

Existe @) = 1 relagdo. Temos, Vb € R,
71,6(b) = =z15(b) e z26(b) = —225(D) .

c¢) Terceiro caso
cl) Estilo 1

Definamos

modelo 1 : M[(ag; > 0, bg; > 0)]
modelo 2 : M[(agy > 0, bgy < 0)]
modelo 3 : M[(ag3 < 0, bgz < 0)]
modelo 4 : M[(ags <0, bog > 0)] .

Facamos
an = aol1 , boo = —bo1
aoz = —ao1 , boz = —bo

aop4 = —ao1 , boa = b1

aps = —am , bos = bo

aps = —am , boa = by

aop4 = ao3 , bos = —bos .

Usemos a notacao z;x, j = 1,2, k =1,2,3,4, para denotar a j-ésima raiz do modelo k.
Existem (‘2‘) = 6 relacoes. Temos, Vc € R,

212(c) =—z221(c) e z22(c) =-z11(c) (Relagdo entre o modelo 1 e o modelo 2)
213(c) =22.1(=c) e z23(c) =z11(=c) (Relagdo entre o modelo 1 e o modelo 3)
214(c) = —z11(=¢c) e z24(c) =—z21(—c) (Relacdo entre o modelo 1 e o modelo 4)

213(c) = —z12(=¢c) e z23(c) = —z22(—c) (Relacdo entre o modelo 2 e o modelo 3)
214(c) =222(—c) e z24(c) =z12(—c) (Relagdo entre o modelo 2 e o modelo 4)

214(c) = —z223(c) e z24(c) =-z13(c) (Relagdo entre o modelo 3 e o modelo 4).

c2) Estilo 2

Definamos
modelo 5 : M[(ags > 0, bgs = 0)]
modelo 6 : M(ape < 0, b06 =0)].

Facamos
ape = —aops , boe = bos = 0.

Usemos a nota¢do z;x, j = 1,2, k = 35,6, para denotar a j-ésima raiz do modelo k.

Existe (g) = 1 relagdo. Temos, V¢ € R,
71,6(c) = 225(=c) = —z15(=c) e z226(c) =215(-c) =-225(-c) .
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6.2 Exemplos

1) Molde sobre o qual repousam as raizes de f,(z) =az> X3z X7, a e R*.
Figura 30: MOL|(bo = +3,co = +7), (bo = =3,co = +7), (bo = +3,c0 = =7), (bo = =3,co = =7)]. Temos +5 e +4
quando (bg = =3, ¢co = +7) ou (by = +3, co = —7); e temos —% e —% quando (bg = +3,co = +7) ou (bg = =3, ¢ = 7).

Fonte: elaborada pelo autor

2) Molde sobre o qual repousam as raizes de f,(z) =az> X7, a € R*.

Figura31: MOL[ (b =0, co=7), (bo =0, co = -7)]

Fonte: elaborada pelo autor

3) Molde sobre o qual repousam as raizes de f,(z) = az> = 3z, a € R*.

Figura 32: MOL|[(bo =+3, co=0) , (bo = -3, ¢o = 0)]

°
Fonte: elaborada pelo autor
4) Molde sobre o qual repousam as raizes de f,(z) = +3z°+bz+7oude f;,(z) = —37°+bz-7, b €

R.
Figura 33: MOL[(ag = +3, co =+7) , (a0 = -3, co = -7)]

wN]

_F 0
3

Fonte: elaborada pelo autor
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5) Molde sobre o qual repousam as raizes de f;,(z) = +3z°+bz—7oude f;(z) = —3z>+bz+7, b €
R.

Figura 34: MOL[(aO =+3, co=-7),(a0=-3, co = +7)]

O
%

0
Fonte: elaborada pelo autor

6) Molde sobre o qual repousam as raizes de f,(z) =~ 3z>2+bz, b eR.

Figura 35: MOL[(ag = +3, c9 =0), (ap = -3, co = 0)]

&
0

Fonte: elaborada pelo autor

7) Molde sobre o qual repousam as raizes de f.(z) =~ 7z> £ 3z+c¢, c e R.

Figura 36: MOL [ (ag = +7, bo = +3),(ao = +7,bg = =3),(ag = =7, bg = —-3),(ao = =7, b = +3)]. Temos +; quando
(ag =+7,bg = =3) ou (ag = =7, by = +3), e temos —13—4 quando (ag = +7, by = +3) ou (a9 = =7, by = =3).

i3
14

Fonte: elaborada pelo autor

8) Molde sobre o qual repousam as raizes de f.(z) == 7z>+c, c € R.

Figura 37: MOL[(ag = +7 , bo =0) , (ap = =7, bo = 0)]

Fonte: elaborada pelo autor
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6.3 Componentes conexas

Aqui provaremos que as componentes conexas de um molde sao abertas e fechadas no molde.
Antes, vamos recordar:

Lema 6.1 “Seja X c R". Um conjunto A C X é aberto em X se, e somente se, existe um aberto
B c R" tal que A = X N B”(Lima, 2000, p. 36).

Teorema 6.1 (Limal 2000, p. 36) Vale para os abertos em X:
1. 0 e X sdo abertos em X.

2. Uma intersecdo finita e uma reunido qualquer de abertos em X é um conjunto aberto em X.

,

Lema 6.2 “Se A ¢ R™ ¢ B C R”" sdo abertos entdo o produto cartesiano A X B C R™" ¢
aberto”(Lima, 2000, p. 37).

Teorema 6.2 “Seja F C X. A fim de que F seja fechado em X é necessario e suficiente que o
conjunto X — F (complementar de F relativamente a X) seja aberto em X ”(Lima, 2000, p. 41).

-

Lema 6.3 “Se F ¢ R"™ e G C R”" sdo fechados entdo o produto cartesiano F X G C R"™™" ¢
fechado” (Lima, 2000, p. 42).

a) Primeiro caso
Vimos que, supondo o eixo x orientado para a esquerda e o eixo y para cima, o molde 1

¢ a reunido disjunta m; = C; U Cy U C3, onde C; =]0, +co[x{0}, Cy = ]—g—g,o[ X {0} & C3 =

(=55 < 10) v (=02 x 03 ur ([ 50]) v i [Fo]).
Seja € > 0. Pelo Lema 10, +00[X] — €, +€[ é aberto em R2. Temos C; = m; N (]0, +oo[X] —

€,+€[). PeloLemal6.1, C; C m é aberto em m;. Agora, tomamos a bola aberta B(—Zc—é’o; 2‘—2)0) c R2.

Temos C; = my N B( — 2%’0;2%)). Pelo Lema C> C my é aberto em my. Sabemos que
[—co/bg,+oo[ é fechado em R e {0} c R é fechado em R. Pelo Lema [—co/bg, +o0[x{0}
é fechado em R? e, pelo Teorema R? — ([-co/bg, +o[x{0}) é aberto em R?. Dai temos
C3 = my N (R? = ([=co/bo, +o[x{0})) e, pelo Lema C3z C my é aberto em m;.

Sejam j, k,l € {1,2,3}, j # k # [. Afirmacdo: C; é fechado em m;.

De fato, seja lecj ={(x,y) € mi|(x,y) ¢ C;} = CL UC;. Como C; C my e C; C my sdo
abertos em m1, por 2. do Teorema Cm, C; € aberto em m;. Pelo Teorerna C; € fechado em
mi.

Vimos que o molde 2 (my = C; U C; U C3 U Cy) € a reunido disjunta das componentes conexas
C1 =] — 00,0[%x{0}, C; =]0, +o0[x{0}, C3 = {0}x] — 00,0[ e C4 = {0}X]O0, +o0[.

Seja e > 0. Pelo Lemal6.2] | — c0,0[X] — €, +€[, ]0,+00[x] — €, +€[, | — €, +€[X] — 00,0[ e
] — €, +€[%x]0, +oo[ sdo abertos em R2. Pelo Lema Ci =my N (] —o00,0[X] —€,+€]) C mo,
Cr =my N (]0,+00[X] —€,4€[) Cmy, C3=mrN (] — €,+€[X] —0,0[) Cmaye Cy=myN (] —
€,+€[%]0, +o0[) C my sdo abertos em m.

Sejam j, k,l,n € {1,2,3,4}, j # k # | # n. Afirmagdo: C; é fechado em m.
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De fato, seja szCj ={(x,y) e my|(x,y) ¢ C;} =CrUC,UC,. Como Cy Cmy,C; Cmpe
C,, C my sao abertos em m, por 2. do Teorema CmZC ; € aberto em m,. Pelo Teorema , C;é
fechado em m,.

Vimos que o molde 3 € m3 = R. Por /. do Teorema m3 € aberto em m3. De novo por /. do
Teorema vem que Cm3m3 = () € aberto em m3. Dai, pelo Teorema m3 é fechado em m3.

Vimos que o molde 4 é m4 = {0}. Por /. do Teorema my € aberto em my. De novo por 1.
do Teorema vem que Cm ,m4 = 0 é aberto em m4. Dai, pelo Teorema my € fechado em my.

b) Segundo caso

Vimos que, com o eixo x orientado para a direita e o eixo y para cima, o molde 1 é a com-
ponente conexa my = (]0,v/co/ag] x {0}) U ([v/co/ag, +oo[x{0}) U (] — o0, —+/co/ap] x {0}) U
([=+vco/ao,0[x{0}) U f([=+/co/ao, yco/aol) U fi([=+co/ao, vco/aol).

Por /. do Teorema m1 € aberto em m;. De novo por /. do Teorema vem que Cn mp =0
¢ aberto em m . Dai, pelo Teorema my € fechado em m;.

Vimos que o molde 2 € a reunido disjunta my =] — o0, 0[U]0, +00[. | — 00, 0[ é um aberto em R
e temos | — oo, 0[= myN] — o0, 0[. Dai, pelo Lema[6.1] | — o0, 0[C my é aberto em m,. Por outro
lado, C,n,] — ©0,0[=]0,+co[ é um aberto em R, e temos ]0, +co[= m»N]0, +oo[. Dai, pelo Lema
10, +co[C my é aberto em my. Logo, pelo Teorema |6.2) | — o0, 0[ € fechado em m,. Como
Cim, 10, +00[=] — o0, 0[ é aberto em m,, segue pelo Teorema [6.2| que |0, +oo| é fechado em m;.

Vimos que o molde 3 € m3 =] — 00, 0] U [0, +oo[= R. Portanto, a justificativa € a mesma da dada
para o molde 3 do Primeiro caso.

¢) Terceiro caso

Vimos que o molde 1 € acomponente conexam| = C;UC,UC3UCy, onde C; =] —o0, —bg/2ap] X
{0}, G2 = [=bo/2ap, +o0[x{0}, C3 = {-bo/2ap}X] — ,0] e C4 = {—bo/2ag} X [0, +oo].

Por /. do Teorema m1 € aberto em m;. De novo por /. do Teorema vem que Cn mp =0
€ aberto em m . Dai, pelo Teorema my € fechado em m;.

Vimos que o molde 2 é a componente conexa my = C; UC, U C3 U Cy, onde C =] — o0, 0] X {0},
Cy = [0, +00[x{0}, C3 = {0}Xx] — 00,0] e C4 = {0} x [0, +00[. A justificativa ¢ a mesma da dada
para o molde 1.

6.4 Continuidade e diferenciabilidade
a) Continuidade

al) Primeiro caso
* M[(bo > 0,co > 0)]
A primeira raiz é a funcdo z; : R* — R? dada por

((_b0+ b2 — 4ac, )/2a,0) para a <0 ou 0 <a < b2/4cy

zi(a) = § (=2¢0/bo,0) para a = by/4co 3)

(—bo / 2a, \J4aco - b2 / Za) para a > b2/4co .
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Sabemos do curso de Calculo de uma varidvel real a valores em R que as fungdes —by,

bR~ 4aco, \[b3 — 4aco, ~bo + \[b3 — 4aco, 2a, (~bo + \[b} — 4acy) [2a ¢ a constante 0 s30

continuas paraa < Oou 0 < a < b% /4cp. Pelo Corolério

71 €continuaparaa <0 ou 0 <a < b(z)/4co . 4)
Temos
lim zi1(a) = lim ((—bo+,/b(2)—4aco )/Za,O) = (—2c0/bo,0) = zl(b8/4c0) (5)
a_)4c% a_)4c(z)
e lim z1(a) = lim (—bo /2 \Jaco - b2 |2 / ) (=2c0/bo,0) = z1(b2/4cy) . (6)
a—>—0 a—>—0
4cq 4cq
Ou seja,
lim2 z1(a) = zl(b(z)/4c0), isto é , z; é continua paraa = b%/4co. @)
by
a—)%

Novamente do curso de Calculo de uma variadvel real a valores em R, sabemos que as fun¢des
—byg / 2a e (|4acy — b% / 2a sao continuas para a > b(z) /4co. Pelo Corolério
z1 € continua para a > b(z) /4co . (8)

De M), (7) e (8) segue que z; € continua em R*.

A prova da continuidade de z; em R* € similar a de z;.

Sdo também continuas as z; : R* — R2, j = 1,2, nos modelos M[(by < 0,co > 0)],
M[(bo > 0,co < 0)], M[(bo < 0,co < 0)], M[(bo = 0,co > 0)], M[(bg = 0,co < 0)],
M[(bo > 0,co = 0)], M[(by < 0,co =0)] e M[(bg =0,co=0)].

a2) Segundo caso

° M[(Clo > 0,co > 0)]

A primeira raiz é a fungio z; : R — R? dada por

(( b ++/b% - 4aycy )/2a0,0) para b < —2+Japgco ou b > 2+fapcy
( Co/ao, ) para b= —2\/a0C0
z1(b) = A )
( Co/ao 0) para b= 2\/a0Co
( b/2a0, \/461000 - b2 /zao) para — 2\/6106‘0 <b< 2\/61()C0 .
( b ++/b? - 4a0co) / 2ap e 0 sao continuas para b < —2+/agcp. Pelo Corolério
z1 € continua para b < —2+/apcy . (10)
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Temos
li -b+ \/bz - 4aoC0 0 ( Cco 0) li b \/4(1()0() - b? (11)
1m s = —, = im —_— .
b——2+/aocy” 2ag ao b——2vagee" \ 240 2ag
Istoé, lim z1(b) = z1(—2+/apcp), ouseja, z; € continua para b = —2+/agcg . (12)
b——2+Japco
—b/2ag e \4aocy — b? /2a0 sdo continuas para —2+/apco < b < 24/apcyp. Pelo Corolério

71 € continua para — 2+v/agco < b < 2+/aqgcy . (13)

Também temos

—b ++/b? - 4 4agco — b?
lim ( * “Oco,o):(— €0 ): lim ( b &) (14)

P 0 )
b—2+fapce” 2ay by b—2+agco~ \ 2ag 2a

Istoé, lim z;(b) = z1(2vapco), ouseja , z; € continua para b = 2+/apcy . (15)
b—2+fapco

Analogamente ao que foi feito para b < —2+/agco decorre que
z1 € continua para b > 2+/apcy . (16)

De (10) a segue que z; é continua em R.

A prova da continuidade de z; em R € similar a de z;.

* Sdo também continuas as z; : R — R?, j = 1,2, nos modelos M[(ag < 0,co < 0)],
M[(ap > 0,co < 0)], M[(ap < 0,co > 0)], M[(ag > 0,co = 0)] e M[(ap < 0,co =0)] .

a3) Terceiro caso

* M[(agp > 0,by > 0)]

A primeira raiz é a fungio z; : R — R? dada por

((~bo+ b3 —4ace ) [2a0,0)  para ¢ < bF/4as

z1(c) = { (=bo/2ap,0) para ¢ = bj/4ag (17)

(—bo/Zao, \J4aoc — b% /Zao) para ¢ > b(z)/4ao )
(—bO + \/b(z) - 46106) /2ao e 0 sdo continuas para ¢ < b(z)/4a0. Pelo Corolério

z1 € continua para ¢ < b8/4a0 . (18)
Temos
~bo + 4[b% — 4agc b b A4aoc — b}
. 0 . 0 0
1 ,0|=|-——,0|=1 - . 19
H”% B 2ay ( 2ag ) Hbr% +| 2agp 2ay (19)
c—>% c—>%
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Isto €, lim2 z1(c) = Z1(b%/4a0) , ouseja , z; €continua parac = b(2)/4ao i (20)
b
P
—bo/2ap e y[4apc — b% /2ao sdo continuas para ¢ > b(z)/4a0. Pelo Corolario
z1 € continua para ¢ > b(% /4ay . (21)

De (I8), (20) e (2I) segue que z; € continua em R.

A prova da continuidade de z; em R € similar a de z;.

* Sdo também continuas as z; : R — RZ, j = 1,2, nos modelos M[(ag > 0,bg < 0)],
M[(ap < 0,bg < 0)], M[(ap < 0,b9 > 0)], M[(ag > 0, b = 0)] e M[(ap < 0, b =0)] .

Ha um resultado que diz que as raizes de um polindmio dependem continuamente dos seus
coeficientes. Mais precisamente tem-se o
Teorema 6.3 Sejam p(z) = apz™ +a 12" +- - - + a,, um polindmio complexo, a € C
uma raiz de p com multiplicidade k e D um disco de centro a e raio €, ndo contendo outra
raiz de p. Existe § > 0 tal que se q(z) = boz™ + b12" ' + - -+ + by, é qualquer polinémio
satisfazendo by — ag| < 6, ..., |bm — am| < 6 entdo q possui k raizes no disco D (cada
uma delas sendo contada de acordo com sua multiplicidade). (Lima, 2000, p. 232)

b) Diferenciabilidade

Toda raiz simples de um polindmio é uma funcdo infinitamente diferencidvel (classe C*°) dos
coeficientes desse polindmio. Mais precisamente tem-se 0

Teorema 6.4 Para cada a = (a, ..., an) € C"™ = R**2 indiqgue com p, o po-
linomio complexo p(z) = ap+ a1z + -+ auz™. Se zog é uma raiz simples do polinomio
Pa> existem bolas abertas B = B(a, €) em C"™' ¢ D = D(zo,6) em C tais que, para todo
b € B, o polinémio py, tem uma iinica raiz 7 = z(b) em D, a qual é simples, e a aplicacdo
B — R2, definida por b — z(b), é de classe C*®. (Limal 2000, p. 343)

Falando por alto, em particular as raizes simples de f(z) = ¢+ bz + az’,a € R*, b e R,c € R,
sao fungdes C™ dos seus coeficientes; em particular o sdo se fixados dois dos trés coeficientes reais.

Naio obstante, com excecao daraizduplaz; = zp =0 € C*(R*) no modeloM[(bo =0, co= O)]
as raizes duplas nos modelos M[(bg > 0, co > 0)],M[(bg <0, co > 0)], M[(bo >0, co <0)],
M[(by < 0, co < 0)], M[(agp > 0, co > 0)], M[(ap < 0, ¢co < 0)], M[(ag > 0, ¢co = 0)],
M[(ap < 0, co = 0)], M[(agp > 0, by > 0)], M[(ag > 0, by < 0)], M[(ag < 0, by < 0)],
M[(ap < 0, by > 0)], M[(ap > 0, by =0)] e M[(ap < 0, by = 0)] ndo sdo diferencidveis.

Provemos que a raiz dupla no modelo M[(bg > 0, ¢o > 0)] ndo é diferenciavel em a = b% [4co .
De (3) temos

2
z1(a) — 21 (b} /4co) _ 4cg —bo + \jbo —4acy .\ 2¢o

, 0 ara 0 <a < b3/4c
a-— b(z)/4co deoa — bg 2a by | ~—— P /4o
A(a)
(22)
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z1(a) — z1(b?/4c 4 -by 2 2
1(a) 12( o/4c0) | dco 2[ 0+ﬂ],$ para a > bj/4co. (23)
a—b0/4co 4coa - by 2a bo a /4ac0—b(2)
U ———
B(a)
Assim,
. . . 2C0
hng A(a)=0 e lim B(a)= lim —— =+c0. (24)
bz~ p2

0 0 %" a.ldacy — b2
v A= a7 0 0

Dai, a componente y de z; ndo € diferencidvel em a = bg /4co , logo z; ndo € diferencidvel em
a= b(z) /4co . Analogamente, z, ndo é diferencidvel em a = b(z) /4cq . Portanto, a raiz dupla ndo é
diferenciavel em a = b(z) [4co .

Provemos que a raiz dupla no modelo M[(ag > 0, ¢o > 0)] ndo é diferenciavel em b = 2+/agcy .
De (9) temos

b) - 24/ 1 2+Japco+b
(21)y(b) = (21), (2vaoco) - NV TS para —2+/apco < b < 2+Japgcy .  (25)
b —2+Japco 2a0 \[2+fagco — b

Assim,
T 1 2+/apco + b

1m — _—
b—2+Japgco™ 261() /2 /CIOCO - b

e a componente y de z; ndo € diferencidvel em b = 2+/apco. Logo, z; ndo € diferencidvel em
b = 2+fapco. Analogamente, a componente y de zp nao € diferencidvel em b = 24/apco. Dai 2o
ndo € diferencidvel em b = 24/agco. Portanto, a raiz dupla ndo € diferencidvel em b = 24/agco. De
maneira similar, prova-se que a raiz dupla ndo € diferencidvel em b = —2+/agco.

= - (26)

Provemos que a raiz dupla no modelo M[(ag > 0, by > 0)] ndo é diferenciavel em ¢ = b(z) /4ay .
De (17) temos

z1)v(¢) = (z1)y (b2 /4a 2
(z1)y(c) (21)y( O/ 0) _ para ¢ > b%/4ao. (27)
¢ — b2 /4ag m
Assim, )
lim ———— =+ (28)

2t 12
ozl \J4aoc bg

e a componente y de z; nao € diferencidvel em ¢ = b(z) /4ag. Logo, z; ndo € diferencidvel em
c= b% /4ao. Analogamente, a componente y de z, ndo € diferencidvel em ¢ = b% /4ap. Dai z; ndo é
diferencidvel em ¢ = b(z) /4ag. Portanto, a raiz dupla ndo é diferencidvel em ¢ = b% /4ay.
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Provemos que a raiz dupla no modelo M[(ag > 0, co = 0)] ndo € diferencidvelem b =0 .
A primeira raiz é a fungio z; : R — R? dada por

(=b/ayp,0) para b <0

z1(b) = (0,0) para b =0 (29)
(0,0) para b > 0. Temos
(z1)x (b) = (z1), (0) [ =1/ap ~ para b <0 (30)
b-0 10 para b > 0. Assim,
. (2)e (b) = (21), (0) _ (20, () = (21), (0) _
o b—0 =-l/ao e Jlim, b—0 =0 G

e a componente x de z; nao € diferencidvel em b = 0. Logo, z; nao € diferencidavel em b = 0.
Analogamente, a componente x de z> nao € diferencidvel em b = 0. Dai z, nao € diferencidvel em
b = 0. Portanto, a raiz dupla nao € diferenciavel em b = 0.

Provemos que a raiz dupla no modelo M[(ag > 0, by = 0)] ndo é diferencidvel em ¢ =0 .
A primeira raiz é a funcdo z; : R — R? dada por

—c/ag ,0) para ¢ <0

zi(e) = § (0,0) para ¢=0 (32)
(0, c/a ) para ¢ > 0. Temos

(z1)y () = (z1)y (0) 0 para ¢ <0 "

c-0 B ﬁ para ¢ > 0. Assim, 33)

(z1)y (¢) = (z1), (0) (z1)y (¢) = (z1), (0)
lim —= Y =0 e lim —= Y = too,
c—0~ c—0 c—0* c-0
e a componente y de z; ndo € diferencidvel em ¢ = 0. Logo, z; ndo é diferencidvel em ¢ = 0.
Analogamente, a componente y de z, nao é diferencidvel em ¢ = 0. Dafi z, ndo € diferencidvel em

¢ = 0. Portanto, a raiz dupla nao € diferenciavel em ¢ = 0.

(34)

6.5 Um pouco mais de explanacao

Dado que Yamaoka (2023) e este artigo tém também caracteres instrucionais, € pertinente
acrescentarmos a referéncia bibliografica que contém a teoria que embasa o item 7. de|Yamaoka
(2023} p. 59), ficando assim:

“7. Em cada subcaso, seja G C R? o conjunto dos pontos do caminho da 1° raiz em R?
eGycR?%0 conjunto dos pontos do caminho da 2° raiz em R2. O(s) ponto(s) aderente(s)”
[Definicao “comum(ns) a G| e a Gy é (sao):... .Conforme visto acima..., para cada
subcaso existe pelo menos um ponto P...tal que toda bola aberta em R? com centro P contém
algum ponto de G e de G, ou seja, P é um ponto aderente a G1 e a Go” [“A fim de que
o ponto a seja aderente ao conjunto X, € necessdrio e suficiente que toda bola aberta de
centro a contenha algum ponto de X”’(Lima, 2000, p. 38).] “,ou seja, P € G1 N Gy, onde
G j denota o conjunto dos pontos aderentesa G, j =1,2” [Deﬁnigﬁo “,0 que implica
que a distancia entre G1 e G, ” (Lima, 2000} p. 49) “¢ d(G1,G,) = d(G1,G3)” (Lima,
2000, p. 50) “=0".

YAMAOKA, L. C. Os caminhos das raizes da fungio quadritica - molde, modelo e estilo. C.Q.D. — Revista Eletronica Paulista de Matematica,
Bauru, v. 26, 26014, 2025.
DOI:10.21167/cqdv26e26014  Disponivel em: www. fc.unesp.br/departamentos/matematica/revista-cqd

26



"Of
=
=)

7 Conclusoes

Em cada tabela: a 1? coluna representa o Estilo; a 2%, o Modelo; a 3%, o Niumero de componentes
conexas de cada raiz por Modelo; a 4%, o Molde; a 5%, o Numero de componentes conexas do Molde.

Tabela 1 - Primeiro caso

Estilo Modelo N® c.c./raiz/Model Molde N° c.c. Molde
. M[(b() >0,co > 0)] . MOL[(Z?() > 0,co > 0),
1 . M[(bg <0,co>0)] | 1*raiz:2 ; 2% raiz:2 (bg < 0,co > 0), 3
. M[(bo >0,c9 < 0)] (bo >0,c9 < 0),
. M[(bo <0,cp < 0)] (bo <0,cp < O)]
2 .M[(bp=0,co>0)] | 1*raiz:2 ; 2*raiz:2 | . MOL[(bo =0, ¢y > 0), 4
. M[(b() = 0, co < 0)] (b() = 0, co < 0)]
3 . M[(bg > 0,co=0)] | 1*raiz:1;2%raiz:2 | . MOL[(bg > 0, co = 0), 1
. M[(bg <0,c0=0)] | 1*raiz:2 ; 2* raiz:1 (bg <0,co=0)]
4 . M[(bg=0,co=0)] | 1*raiz:1 ; 2*raiz:1 | . MOL[(by =0, ¢y = 0)] 1
Fonte: elaborada pelo autor
Tabela 2 - Segundo caso
Estilo Modelo N° c.c./raiz/Model Molde N° c.c. Molde
1 . M[(ag > 0,co > 0)] | 1*raiz:1 ; 2*raiz:1 | . MOL[(ag > 0, ¢y > 0), 1
. M[(Cl() <0,cp < 0)] (a() <0,cp < O)]
2 . M[(ag > 0,co < 0)] | 1*raiz:1 ; 2*raiz:1 | . MOL[(ao > 0, ¢y < 0), 2
. M[(Cl() <0,¢c0 > 0)] (a() <0,cp > 0)]
3 . M[(ag > 0,c9=0)] | 1*raiz:1 ; 2%raiz:1 | . MOL[(ag > 0, co = 0), 1
. M[(a() <0,c0 = 0)] (a() <0,c0= 0)]
Fonte: elaborada pelo autor
Tabela 3 - Terceiro caso
Estilo Modelo N° c.c./raiz/Model Molde N° c.c. Molde
M[(ao >0, by > O)] . MOL[(CIO >0, bg > O),
1 M[(ap > 0,b9 < 0)] | 1*raiz:1 ; 2% raiz:1 (agp > 0,by < 0), 1
. M[(ao <0,bg < 0)] (ao <0,bg < O),
. M[(ao <0,by > 0)] (a() <0,bg > 0)]
2 M[(ag > 0,bg =0)] | 1*raiz:1 ; 2*raiz:1 | . MOL[(ao > 0, by = 0), 1
M[(ap < 0,bg = 0)] (ap < 0,by =0)]

Fonte: elaborada pelo autor

Exceto o Estilo 4 (da Tabela 1 - Primeiro caso), todos os demais Estilos apresentam um niimero
par de Modelos.

Na 3? coluna de cada tabela, em cada Estilo a soma do niimero de componentes conexas da 1
raiz é igual a soma do niimero de componentes conexas da 2° raiz. Por conseguinte, tem-se:

* na Tabela 1 - Primeiro caso, na 3% coluna, a soma do nimero de componentes conexas da 1?
raiz € igual a soma do nimero de componentes conexas da 2° raiz: 16;
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* na Tabela 2 - Segundo caso, na 3* coluna, a soma do nimero de componentes conexas da 1?
raiz € igual a soma do nimero de componentes conexas da 2 raiz: 6;

* na Tabela 3 - Terceiro caso, na 3* coluna, a soma do nimero de componentes conexas da 1?
raiz € igual a soma do niimero de componentes conexas da 2? raiz: 6.

Portanto, considerando-se as 3s colunas das 3 tabelas conjuntamente, a soma do nimero de com-
ponentes conexas da 1* raiz € igual a soma do nimero de componentes conexas da 2° raiz: 28.

E importante observar que o molde que apresenta o niimero maximo de componentes conexas,
ou seja, 4 (=2 vezes o grau de f =2.2), provém de f(z) = azz +co, a € R*, ¢ £ 0.

0 a,b,c €R, a# 0, temos:

Para f(z) = az> + bz! + ¢z
« N° de Estilos do Primeiro caso = gr(f) + gr(z?) =2+2=4;
* N° de Estilos do Segundo caso = gr(f) + gr(z') =2+ 1 =3;
« N° de Estilos do Terceiro caso = gr(f) + gr(z°) =2+0 = 2;

onde gr(f) é o graude f e gr(z/) é o grau de z/.
Sinteticamente:

Para f(z) = Axz? + A1z' + Ao2®, A; €R, j=0,1,2, Ay # 0, temos

* NE(A)) = gr(f) +gr(z/),

onde NE(A») é o N° de Estilos do Primeiro caso, isto é, NE(A;) = 4;
NE(Aj) é o N°de Estilos do Segundo caso, isto é, NE(A;) = 3;
NE(Ag) é o N° de Estilos do Terceiro caso, isto é, NE(Ap) = 2.

Para f(z) = A1z' + Ao, A;eR, j=0,1, Ay # 0, temos
« NE(A)) =gr(f)+gr(z/), j=0,1, istoé, NE(A))=2, NE(Ap)=1.
Para f(z) = Apz" + Ap1 21+ + A1zt + A% A; €R, j=0,...,n, A, #0, temos
* NE(A))=gr(f)+gr(z/), j=0,...,n; n>3?
Isto é,

« NE(Ap) =2n, NE(Ay1)=2n—1,..., NE(Ag)=n; n>3?

Em Yamaoka (2023) e neste artigo, os caminhos das raizes da fungao quadratica nos proporci-
onaram um passeio pela topologia do espaco euclidiano - aplicagdes continuas, limites, conjuntos
abertos, conjuntos fechados, distancia entre dois conjuntos e conexidade - e pela diferenciabilidade
de um caminho.

Em sintese, de um problema de aproximados 4 milénios cuja semente era resolver equagoes
quadrdticas, ao fixar dois coeficientes reais e variar o coeficiente real remanescente da funcdo
quadrdtica para determinar os caminhos das duas raizes pudemos usufruir de um bom nimero de
conceitos e de resultados estabelecidos da Anélise Cldssica para atingir nossos objetivos.
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Um dtimo de ludicidade: A Figura 38| (L’atelier de Mathématiques) ilustra o ato de “VES-
TIR”/“despir” o Molde/notacdo e o de “DESPIR”/*“vestir” o Modelo/notacao para o Estilo 1 do
Primeiro caso.

Figura 38: (L’ atelier de Mathématiques). “VESTIR” o Molde: ornamentd-lo com os eixos x € y, com os caminhos (em
azul e em vermelho; a raiz dupla (-1, 0) permanece em preto) e com os intervalos do coeficiente varidvel (em verde);
“DESPIR” 0 Modelo: despi-lo dos eixos x e y, dos caminhos (em azul e em vermelho; a raiz dupla (-1, 0) permanece
em preto) e dos intervalos do coeficiente varidvel (em verde); “vestir” nota¢do: acrescentar OL, (bo =-2,c¢= l),
(bo=2, co=-1) e (bo =-2, co = —1) a notagio do Modelo; “despir” notagéo: retirar OL, (bg = -2, ¢o = 1) ,
(bo=2, co=—-1) e (bp=-2, co=-1) danotagdo do Molde. L'atelier de Mathématiques permite visualizar:

(a) o n® de componentes conexas de cada raiz (=2) - na Figura referente ao Modelo (a direita);

(b) 0 n® de componentes conexas do Molde (=3, cada uma aberta e fechada no molde) - na Figura referente ao Molde (a
esquerda);

(c) d(G1,G7) = 0 - na Figura referente ao Modelo (a direita): os pontos aderentes comuns a G e a G, sdo (0,0) [¢
G1,¢ G2l e (-1,0) [€ G, € G2 ;

(d) a continuidade das 2 raizes em R* - na Figura referente ao Modelo (a direita) - provada na pag.21;

(e) a “quina” (—1,0) - na Figura referente a0 Modelo (a direita) - , que acusa a ndo diferenciabilidade da raiz dupla em
a = 1, provada na pag.23.

Primeira raiz
Segunda raiz

"VESTIR"

+1  "DESPIR"

-1
3 T---m--o
"despir"
MOL[(b0=2,c0=1),{b0=-2,c0=1),(b0=2,c02-1),{b0=-2,c0=-1)] "vestr" M[{b0=2,c0=1)]

Fonte: elaborada pelo autor

Outro: A Figura 39| (L’atelier de Mathématiques 2) ilustra o ato de “VESTIR”/“despir” o
Molde/notagao e o de “DESPIR”/“vestir” o Modelo/notacao para o Estilo 1 do Terceiro caso.
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Figura 39: (L’atelier de Mathématiques 2). “VESTIR” o Molde: ornamenti-lo com os €ixos x € y, com 0s caminhos (em
azul e em vermelho; a raiz dupla (-1, 0) permanece em preto) e com os intervalos do coeficiente varidvel (em verde);
“DESPIR” o0 Modelo: despi-lo dos eixos x e y, dos caminhos (em azul e em vermelho; a raiz dupla (-1, 0) permanece
em preto) e dos intervalos do coeficiente varidvel (em verde); “vestir’ notagdo: acrescentar OL, (ag =1, by = —2),
(ao=-1, by =-2) e (ap =-1, by = 2) anotagdo do Modelo; “despir” notagdo: retirar OL, (a9 = 1, by = -2),
(ao=-1, bp=-2)e (ap=-1, by =2) danotagdo do Molde. L'atelier de Mathématiques 2 permite visualizar:

(a) o n® de componentes conexas de cada raiz (=1) - na Figura referente ao Modelo (a direita);

(b) 0 n® de componentes conexas do Molde (=1, aberta e fechada no molde) - na Figura referente ao Molde (a esquerda);
(¢)d(G1,G,) = 0-naFigurareferente ao Modelo (adireita): o ponto aderentecomumaGieaG,é(—1,0) [e G, € G,];
(d) a continuidade das 2 raizes em R - na Figura referente ao Modelo (a direita) - provada na pag.22;

(e) a “quina” (-1, 0) - na Figura referente ao Modelo (a direita) - , que acusa a nao diferenciabilidade da raiz dupla em
¢ = 1, provada na pag.24.

) v Primeira raiz
c>1 Segunda raiz
"WVESTIR"
c<1 c<1
X
) 9 "DESPIR" -*&
Raiz dupla o=1
c>1
"despir"
MOL[(ag=1,bg=2),(ag=2,bp==2),{ay="1, bg=-2),(ag="1,by=2]] "vestir" M [{ag=1,bg=2)]

Fonte: elaborada pelo autor
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