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Resumo
Fixados dois coeficientes reais e variando-se o coeficiente real
remanescente da função quadrática obtém-se o modelo dos
caminhos descritos pelas duas raı́zes da função no plano com-
plexo (Yamaoka, 2023). Um estilo é um conjunto de modelos
que têm relações entre si e compartilham o mesmo molde -
estrutura- (exceto o estilo 4 oriundo de 𝑓𝑎 (𝑧) = 𝑎𝑧2, 𝑎 ∈ R∗,
constituı́do de único modelo). Determinamos o número de
componentes conexas do caminho de cada raiz por modelo.
Determinamos as componentes conexas de cada molde. Da-
mos exemplos dos moldes. Discutimos a continuidade e a
diferenciabilidade das duas raı́zes: elas são contı́nuas em seus
domı́nios e as raı́zes simples são infinitamente diferenciáveis
(com exceção da raiz dupla nula infinitamente diferenciável de
𝑓𝑎 (𝑧) = 𝑎𝑧2, 𝑎 ∈ R∗, as demais raı́zes duplas que aparecem
no texto não são diferenciáveis). O fundamento teórico que dá
suporte aos resultados aqui obtidos pertence à Análise Clássica.
Palavras-chave: raı́zes da função quadrática; caminhos;
molde; modelo; estilo.

Abstract
By fixing two real coefficients and varying the remaining real
coefficient of the quadratic function, the model of the paths
described by the two roots of the function in the complex plane
is obtained (Yamaoka, 2023). A style is a set of models that
are related to each other and share the same mold -structure-
(except the style 4 originating from 𝑓𝑎 (𝑧) = 𝑎𝑧2, 𝑎 ∈ R∗, consis-
ting of a single model). We determine the number of connected
components of the path of each root per model. We determine
the connected components of each mold. We give examples of
the molds. We discuss the continuity and differentiability of the
two roots: they are continuous in their domains and the simple
roots are infinitely differentiable (with the exception of the in-
finitely differentiable zero double root of 𝑓𝑎 (𝑧) = 𝑎𝑧2, 𝑎 ∈ R∗,
the other double roots that appear in the text are not differen-
tiable). The theoretical foundation that supports the results
obtained here belongs to Classical Analysis.
Keywords: roots of quadratic function; paths; mold; model;
style.
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1 Introdução
Seja 𝑓 : C → C dada por 𝑓 (𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐, onde 𝑎 ∈ R∗, 𝑏 ∈ R, 𝑐 ∈ R. As raı́zes complexas

de 𝑓 são 𝑧1
.
= 𝑥1 + 𝑦1𝑖 =

−𝑏+
√
𝑏2−4𝑎𝑐
2𝑎 (primeira raiz) e 𝑧2

.
= 𝑥2 + 𝑦2𝑖 =

−𝑏−
√
𝑏2−4𝑎𝑐
2𝑎 (segunda raiz),

onde 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ R, 𝑖 =
√
−1.

Em Yamaoka (2023), determinamos no plano C os caminhos descritos por ambas as raı́zes da
função quadrática 𝑓 (𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 quando fixamos dois dos três coeficientes reais e variamos o
coeficiente remanescente. Ou seja, consideramos os três casos:

• Primeiro caso: 𝑏0 e 𝑐0 são fixados ; 𝑓𝑎 (𝑧) = 𝑎𝑧2 + 𝑏0𝑧 + 𝑐0, 𝑎 ∈ R∗ (9 subcasos).

• Segundo caso: 𝑎0 ≠ 0 e 𝑐0 são fixados; 𝑓𝑏 (𝑧) = 𝑎0𝑧
2 + 𝑏𝑧 + 𝑐0, 𝑏 ∈ R (6 subcasos).

• Terceiro caso: 𝑎0 ≠ 0 e 𝑏0 são fixados; 𝑓𝑐 (𝑧) = 𝑎0𝑧
2 + 𝑏0𝑧 + 𝑐, 𝑐 ∈ R (6 subcasos).

Cada subcaso corresponde a um modelo dos caminhos descritos pelas duas raı́zes da função
quadrática no plano complexo. Um estilo é um conjunto de modelos que têm relações entre si, e
essas relações são dadas pelas relações existentes entre as raı́zes de um modelo e as de outro. Um
molde é a estrutura comum aos modelos de um estilo.

Em Yamaoka (2023) e neste trabalho percebemos como as expressões algébricas das duas
raı́zes da função quadrática, que nos acompanham desde os idos do que hoje corresponde ao Ensino
Fundamental II, produzem resultados geométricos interessantes. Justamente por isso, é que podemos
citar duas aplicações deste trabalho no âmbito educacional:

1) Ferramenta adicional de apoio ao professor no Ensino Médio. Quando determinamos os
caminhos das duas raı́zes, de certa forma estamos associando as ideias de movimento e de repouso
às duas raı́zes da função no plano. Isso pode contribuir para amenizar o impacto inicial quando da
introdução dos números complexos não reais em sala de aula.

Tomemos como exemplo o modelo 𝑀 [(𝑏0 < 0 , 𝑐0 > 0)] (Figura 2). Para cada 𝑏0 < 0 e
para cada 𝑐0 > 0, temos: quando 𝑎 < 0, a 1ª raiz (real) decresce em ] − ∞, 0[, e a 2ª raiz (real)
cresce em ]0,−𝑐0/𝑏0 [; quando 0 < 𝑎 ≤ 𝑏2

0/(4𝑐0), a 1ª raiz (real) decresce em [−2𝑐0/𝑏0, +∞[, e a
2ª raiz (real) cresce em ] − 𝑐0/𝑏0,−2𝑐0/𝑏0]; e quando 𝑎 ≥ 𝑏2

0/(4𝑐0), a 1ª raiz parte de −2𝑐0/𝑏0 e
percorre a semicircunferência superior em sentido anti-horário até pontos arbitrariamente próximos
de 0 (exceto 0), e a 2ª raiz parte de −2𝑐0/𝑏0 e percorre a semicircunferência inferior em sentido
horário até pontos arbitrariamente próximos de 0 (exceto 0).

Uma aplicação para esse mesmo modelo é atribuir um valor a 𝑏0 < 0 e um a 𝑐0 > 0, como
fizemos no exemplo de Yamaoka (2023, p. 41). Em seguida, calculam-se −𝑐0/𝑏0, −2𝑐0/𝑏0 e
𝑏2

0/(4𝑐0), e rotulam-se os pedaços dos caminhos das duas raı́zes. Então, o professor atribui um valor
𝑎0 ≠ 0 ao coeficiente variável 𝑎 e pede aos estudantes que indiquem em qual pedaço do caminho
(ou rótulo) cada uma das duas raı́zes está localizada. Assim, o estudante poderá perceber o percurso
que cada raiz fará para os valores 0 ≠ 𝑎 ≥ 𝑎0.

No modelo 𝑀 [(𝑏0 = −2 , 𝑐0 = 1)], o professor pode mostrar que, à medida que 𝑎 cresce no
intervalo 0 < 𝑎 < 1, sobre o eixo real as duas raı́zes se aproximam, se encontram no ponto (1, 0)
-posição da raiz dupla- quando 𝑎 = 1 e percorrem as semicircunferências quando 𝑎 > 1.

2) Aplicações em cursos de Graduação. Este trabalho pode auxiliar no ensino de Análise, de
Álgebra e de Topologia básicas com o seu forte apelo geométrico.

No curso de Cálculo 2 (mas também em funções complexas), dentro do tópico de função de uma
variável real a valores em R2, pode-se provar a continuidade das duas raı́zes em seus domı́nios e, nos
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modelos nos quais as raı́zes duplas existem, a não diferenciabilidade delas (exceto a diferenciabilidade
da raiz dupla nula em 𝑀 [(𝑏0 = 0 , 𝑐0 = 0)]). A continuidade das duas raı́zes em seus domı́nios,
bem como a não diferenciabilidade das raı́zes duplas, são então ilustradas com as Figuras.

No curso de Análise, as Figuras podem funcionar como recurso ilustrativo para destacar as
propriedades notáveis dos caminhos das duas raı́zes, como as suas respectivas componentes conexas.
Ali, deve-se chamar a atenção para o seguinte fato: Em cada estilo a soma do número de componentes
conexas da 1ª raiz é igual à soma do número de componentes conexas da 2ª raiz. Ainda como recurso
instrucional, reunimos, numa única Figura ( tanto na Figura 38 quanto na Figura 39 ), a ilustração
de conceitos básicos de Análise e de Topologia envolvendo os caminhos das duas raı́zes.

A estrutura do texto é: nas seções 3, 4, 5 definimos molde, modelo e estilo para os caminhos das
raı́zes da função quadrática para os três casos mencionados acima e determinamos as componentes
conexas de cada molde - visualmente, é simples a identificação destas componentes - baseados nos
fundamentos teóricos da seção 2 e nos de 6.3. Na seção 2 especificamos os materiais utilizados nos
moldes, que, do ponto de vista matemático, abrangem algumas definições e resultados da teoria dos
conjuntos e da Análise. Em 6.1 estabelecemos as relações existentes entre dois modelos distintos
quaisquer de um mesmo estilo. Em 6.2 fornecemos exemplos dos moldes. Em 6.4 tratamos da
continuidade e da diferenciabilidade das duas raı́zes.

Nas Figuras, o sı́mbolo ◦ indica que o ponto não pertence ao caminho da raiz.

2 Materiais utilizados nos moldes
Definição 2.1 O produto cartesiano de dois conjuntos 𝐴 e 𝐵 é definido como o conjunto de todos
os pontos (𝑎, 𝑏) onde 𝑎 está em 𝐴 e 𝑏 está em 𝐵. É denotado por 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 e 𝑏 ∈ 𝐵}.

P.1) 𝐴 × ∅ = ∅ , ∅ × 𝐵 = ∅ , ∅ × ∅ = ∅, onde ∅ é o conjunto vazio.

P.2) (𝐴 ∩ 𝐵) × (𝐶 ∩ 𝐷) = (𝐴 × 𝐶) ∩ (𝐵 × 𝐷), onde 𝐴, 𝐵, 𝐶 e 𝐷 são conjuntos.

Definição 2.2 A reunião disjunta de 𝑛 conjuntos (𝐴1, 𝐴2, ..., 𝐴𝑛) é a união de todos esses conjuntos,
mas com a condição de que eles não tenham elementos em comum (ou seja,sejam disjuntos). Isso
significa que a interseção de quaisquer dois conjuntos 𝐴 𝑗 e 𝐴𝑘 é sempre um conjunto vazio, quando
𝑗 ≠ 𝑘 .

Agora expomos definições e resultados extraı́dos de Lima (2000).

Definição 2.3 “A bola aberta de centro 𝑎 ∈ R𝑛 e raio 𝑟 > 0 é o conjunto dos pontos 𝑥 ∈ R𝑛 cuja
distância ao ponto 𝑎 é menor do que 𝑟. Notação: 𝐵(𝑎; 𝑟)”(Lima, 2000, p. 10).

Definição 2.4 Seja 𝑓 : 𝑋 → R𝑛 uma aplicação definida no conjunto 𝑋 ⊂ R𝑚. Diz-se
que 𝑓 é contı́nua no ponto 𝑎 ∈ 𝑋 quando, para qualquer 𝜖 > 0 dado, se pode obter 𝛿 > 0
tal que todo ponto 𝑥 ∈ 𝑋 cuja distância ao ponto 𝑎 seja menor do que 𝛿 é transformado
por 𝑓 num ponto 𝑓 (𝑥) que dista de 𝑓 (𝑎) menos que 𝜖 (Lima, 2000, p. 21).

Corolário 2.1 Dadas 𝑓 : 𝑋 → R𝑚 e 𝑔 : 𝑋 → R𝑛, seja ( 𝑓 , 𝑔) : 𝑋 → R𝑚+𝑛 definida por
( 𝑓 , 𝑔) (𝑥) = ( 𝑓 (𝑥), 𝑔(𝑥)). Então ( 𝑓 , 𝑔) é contı́nua se, e somente se, 𝑓 e 𝑔 são contı́nuas (Lima,
2000, p. 25).
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Definição 2.5 “Seja 𝑋 ⊂ R𝑛. Um ponto 𝑎 ∈ 𝑋 chama-se um ponto interior a 𝑋 quando é centro de
alguma bola aberta contida em 𝑋”(Lima, 2000, p. 34).

Definição 2.6 “Um conjunto 𝑋 ⊂ R𝑛 chama-se aberto quando todos os seus pontos são interio-
res”(Lima, 2000, p. 34).

Definição 2.7 “Um ponto 𝑎 ∈ R𝑛 diz-se aderente a um conjunto 𝑋 ⊂ R𝑛 quando é limite de uma
sequência de pontos desse conjunto”(Lima, 2000, p. 38).

Definição 2.8 “O conjunto dos pontos aderentes a 𝑋 chama-se o fecho de 𝑋 e é indicado com a
notação 𝑋̄”(Lima, 2000, p. 38).

Definição 2.9 “Um conjunto 𝑋 ⊂ R𝑛 chama-se fechado quando contém todos seus pontos aderentes,
isto é, quando 𝑋 = 𝑋̄”(Lima, 2000, p. 39).

Definição 2.10 “Uma cisão de um subconjunto 𝑋 ⊂ R𝑛 é uma decomposição 𝑋 = 𝐴 ∪ 𝐵, onde
𝐴 ∩ 𝐵 = ∅ e os conjuntos 𝐴,𝐵 são ambos abertos e fechados em 𝑋”(Lima, 2000, p. 54).

“Todo conjunto 𝑋 ⊂ R𝑛 admite pelo menos a cisão trivial 𝑋 = 𝑋 ∪ ∅”(Lima, 2000, p. 54).

Definição 2.11 “Um conjunto 𝑋 ⊂ R𝑛 chama-se conexo quando não admite outra cisão além da
trivial”(Lima, 2000, p. 54).

Exemplo 2.1 “O conjunto vazio e um ponto {𝑥} são exemplos óbvios de conjuntos conexos”(Lima,
2000, p. 54).

Definição 2.12 “Quando existir uma cisão não trivial 𝑋 = 𝐴∪𝐵, diremos que 𝑋 é desconexo”(Lima,
2000, p. 54).

Teorema 2.1 “Um subconjunto 𝑋 ⊂ R é conexo se, e somente se, é um intervalo”(Lima, 2000, p.
55).

Teorema 2.2 “A imagem de um conjunto conexo por uma aplicação contı́nua é um conjunto co-
nexo”(Lima, 2000, p. 55).

Teorema 2.3 “A reunião de uma famı́lia de conjuntos conexos com um ponto em comum é um
conjunto conexo”(Lima, 2000, p. 57).

Corolário 2.2 “Dados 𝑋 ⊂ R𝑚 e 𝑌 ⊂ R𝑛, o produto cartesiano 𝑋 × 𝑌 ⊂ R𝑚+𝑛 é conexo se, e
somente se, 𝑋 e 𝑌 são conexos”(Lima, 2000, p. 59).

Corolário 2.3 “O fecho de um conjunto conexo é conexo”(Lima, 2000, p. 59).

“Todo conjunto 𝑋 ⊂ R𝑛 se exprime como reunião disjunta de subconjuntos conexos máximos,
chamados componentes conexas de 𝑋”(Lima, 2000, p. 63).

A partir de agora damos inı́cio à conceituação de moldes, modelos e estilos para os caminhos
das duas raı́zes quando fixamos dois coeficientes reais da função quadrática e variamos o coeficiente
real remanescente.
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3 Primeiro caso
Em Yamaoka (2023), para o subcaso (𝑏0 > 0 , 𝑐0 > 0) determinamos os caminhos da primeira

e da segunda raı́zes representados na Figura 1(modelo) e denotada M[(𝑏0 > 0 , 𝑐0 > 0)]. Para
(𝑏0 < 0 , 𝑐0 > 0), eles estão na Figura 2(modelo) e a denotamos M[(𝑏0 < 0 , 𝑐0 > 0)]. Para
(𝑏0 > 0 , 𝑐0 < 0), eles estão na Figura 3(modelo) e a denotamos M[(𝑏0 > 0 , 𝑐0 < 0)]. Para
(𝑏0 < 0 , 𝑐0 < 0), os caminhos estão na Figura 4 (modelo) denotada M[(𝑏0 < 0 , 𝑐0 < 0)].

Figura 1: M[(𝑏0 > 0 , 𝑐0 > 0)]

Fonte: Yamaoka (2023, p. 41)

Figura 2: M[(𝑏0 < 0 , 𝑐0 > 0)]

Fonte: Yamaoka (2023, p. 42)

Figura 3: M[(𝑏0 > 0 , 𝑐0 < 0)]

Fonte: Yamaoka (2023, p. 42)

Figura 4: M[(𝑏0 < 0 , 𝑐0 < 0)]

Fonte: Yamaoka (2023, p. 43)

Definamos o Estilo 1 como o conjunto formado pelos 4 modelos das Figuras 1 a 4 (veja 6.1
a1)). Observamos que estes 4 modelos apresentam uma “estrutura”comum (molde 1) sobre a qual
repousam os caminhos das duas raı́zes, exposta na Figura 5, e a denotamos MOL

[ (
𝑏0 > 0 , 𝑐0 > 0

)
,
(
𝑏0 < 0 , 𝑐0 > 0

)
,
(
𝑏0 > 0 , 𝑐0 < 0

)
,
(
𝑏0 < 0 , 𝑐0 < 0

) ]
.

Estudemos o número de componentes conexas do molde 1 da Figura 5 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a esquerda e o eixo 𝑦 para cima na Figura 5. (O
resultado é o mesmo supondo o eixo 𝑥 orientado para a direita.)
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Figura 5: MOL
[ (
𝑏0 > 0 , 𝑐0 > 0

)
,
(
𝑏0 < 0 , 𝑐0 > 0

)
,
(
𝑏0 > 0 , 𝑐0 < 0

)
,
(
𝑏0 < 0 , 𝑐0 < 0

) ]

Fonte: elaborada pelo autor

Pelo Teorema 2.1, ]0, +∞[ ,
]
− 𝑐0

𝑏0
, 0

[
,

[
−2𝑐0

𝑏0
,− 𝑐0

𝑏0

[
,

]
−∞,−2𝑐0

𝑏0

]
são conexos. Do Exemplo

2.1, {0} ⊂ R é conexo. Segue do Corolário 2.2 que 𝐶1
.
=]0, +∞[×{0}, 𝐶2

.
=

]
− 𝑐0

𝑏0
, 0

[
× {0},[

−2𝑐0
𝑏0
,− 𝑐0

𝑏0

[
× {0} e

]
−∞,−2𝑐0

𝑏0

]
× {0} são conexos.

Seja 𝑓 :
[
−2𝑐0

𝑏0
, 0

[
→ R2 dada por 𝑓 (𝑥) =

(
𝑥,

√︂(
𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2
)
. Como as funções reais 𝑥

e
√︂(

𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2
são contı́nuas, vem do Corolário 2.1 que 𝑓 é contı́nua. Como

[
−2𝑐0

𝑏0
, 0

[
é

conexo (pelo Teorema 2.1) e 𝑓 é contı́nua, segue do Teorema 2.2 que 𝑓

( [
−2𝑐0

𝑏0
, 0

[)
é conexo.

Seja 𝑓1 :
[
−2𝑐0

𝑏0
, 0

[
→ R2 dada por 𝑓1(𝑥) =

(
𝑥,−

√︂(
𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2
)

. Como
[
−2𝑐0

𝑏0
, 0

[
é

conexo e 𝑓1 é contı́nua, segue novamente do Teorema 2.2 que 𝑓1

( [
−2𝑐0

𝑏0
, 0

[)
é conexo.

Pelo Teorema 2.3, a reunião 𝐶3 dos subconjuntos conexos
[
−2𝑐0

𝑏0
,− 𝑐0

𝑏0

[
× {0},

]
−∞,−2𝑐0

𝑏0

]
× {0},

𝑓

( [
−2𝑐0

𝑏0
, 0

[)
e 𝑓1

( [
−2𝑐0

𝑏0
, 0

[)
com o ponto comum

(
−2𝑐0

𝑏0
, 0

)
, onde −2𝑐0

𝑏0
é a raiz dupla, é um

subconjunto conexo.
Provemos agora que 𝐶 𝑗 ∩ 𝐶𝑘 = ∅,∀ 𝑗 , 𝑘 ∈ {1, 2, 3}, 𝑗 ≠ 𝑘 .

𝐶1 ∩ 𝐶2 = (]0, +∞[×{0}) ∩ (] − 𝑐0/𝑏0, 0[×{0})
P.2)
= (]0, +∞[∩] − 𝑐0/𝑏0, 0[) × ({0} ∩ {0})
= ∅ × {0}

P.1)
= ∅.

𝐶1 ∩ 𝐶3 = (]0, +∞[×{0}) ∩ (([−2𝑐0/𝑏0,−𝑐0/𝑏0 [×{0}) ∪ (] − ∞,−2𝑐0/𝑏0] × {0})
∪ 𝑓 ( [−2𝑐0/𝑏0, 0[) ∪ 𝑓1( [−2𝑐0/𝑏0, 0[))
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𝐶1 ∩ 𝐶3 = ((]0, +∞[×{0}) ∩ ([−2𝑐0/𝑏0,−𝑐0/𝑏0 [×{0}))
∪ ((]0, +∞[×{0}) ∩ (] − ∞,−2𝑐0/𝑏0] × {0}))
∪ ((]0, +∞[×{0}) ∩ 𝑓 ( [−2𝑐0/𝑏0, 0[))
∪ ((]0, +∞[×{0}) ∩ 𝑓1( [−2𝑐0/𝑏0, 0[))

P.2)
= ((]0, +∞[∩[−2𝑐0/𝑏0,−𝑐0/𝑏0 [) × {0}) ∪ ((]0, +∞[∩] − ∞,−2𝑐0/𝑏0]) × {0})

∪ ©­«{(𝑥, 0) |𝑥 ∈ R∗
+} ∩

©­«𝑥,
√︄(

𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2ª®¬ |𝑥 ∈
[
−2𝑐0
𝑏0

, 0
[ª®¬

∪ ©­«{(𝑥, 0) |𝑥 ∈ R∗
+} ∩

©­«𝑥,−
√︄(

𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2ª®¬ |𝑥 ∈
[
−2𝑐0
𝑏0

, 0
[ª®¬

= (∅ × {0}) ∪ (∅ × {0})

∪
(
{(𝑥, 0) |𝑥 ∈ R∗

+} ∩
{(
𝑥,
√
...

)
|𝑥 ∈

[
−2𝑐0
𝑏0

, 0
[})

∪
(
{(𝑥, 0) |𝑥 ∈ R∗

+} ∩
{(
𝑥,−√...

)
|𝑥 ∈

[
−2𝑐0
𝑏0

, 0
[})

P.1)
= ∅ ∪ ∅ ∪ ∅ ∪ ∅ , pois R∗

+ ∩
[
−2𝑐0
𝑏0

, 0
[
= ∅

= ∅.

𝐶2∩𝐶3
P.2)
= ((] − 𝑐0/𝑏0, 0[∩[−2𝑐0/𝑏0,−𝑐0/𝑏0 [) × {0})∪((] − 𝑐0/𝑏0, 0[∩] − ∞,−2𝑐0/𝑏0]) × {0})

∪ ©­«
{
(𝑥, 0) |𝑥 ∈

]
− 𝑐0
𝑏0

, 0
[}

∩ ©­«
{(
−2𝑐0
𝑏0

, 0
)}

∪
©­«𝑥,

√︄(
𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2ª®¬ |𝑥 ∈
]
−2𝑐0
𝑏0

, 0
[ª®¬ª®¬

∪ ©­«
{
(𝑥, 0) |𝑥 ∈

]
− 𝑐0
𝑏0

, 0
[}

∩ ©­«
{(
−2𝑐0
𝑏0

, 0
)}

∪
©­«𝑥,−

√︄(
𝑐0
𝑏0

)2
−

(
𝑥 + 𝑐0

𝑏0

)2ª®¬ |𝑥 ∈
]
−2𝑐0
𝑏0

, 0
[ª®¬ª®¬

= (∅ × {0}) ∪ (∅ × {0})

∪
(({

(𝑥, 0) |𝑥 ∈
]
− 𝑐0
𝑏0

, 0
[}

∩
{(
−2𝑐0
𝑏0

, 0
)})

∪
({
(𝑥, 0) |𝑥 ∈

]
− 𝑐0
𝑏0

, 0
[}

∩
{(
𝑥,
√
...

)
|𝑥 ∈

]
−2𝑐0
𝑏0

, 0
[}))

∪
(({

(𝑥, 0) |𝑥 ∈
]
− 𝑐0
𝑏0

, 0
[}

∩
{(
−2𝑐0
𝑏0

, 0
)})

∪
({
(𝑥, 0) |𝑥 ∈

]
− 𝑐0
𝑏0

, 0
[}

∩
{(
𝑥,−√...

)
|𝑥 ∈

]
−2𝑐0
𝑏0

, 0
[}))

P.1)
= ∅ ∪ ∅ ∪ (∅ ∪ ∅) ∪ (∅ ∪ ∅) , pois − 2𝑐0/𝑏0 ∉] − 𝑐0/𝑏0, 0[ e √

... ≠ 0 .

= ∅.
Portanto, 𝑚1

.
= 𝐶1 ∪ 𝐶2 ∪ 𝐶3 é a reunião disjunta das componentes conexas 𝐶1, 𝐶2 e 𝐶3.

Em Yamaoka (2023), para o subcaso (𝑏0 = 0 , 𝑐0 > 0) determinamos os caminhos da primeira
e da segunda raı́zes representados na Figura 6(modelo) e a denotamos M[(𝑏0 = 0 , 𝑐0 > 0)]. Para
(𝑏0 = 0 , 𝑐0 < 0),os caminhos estão na Figura 7(modelo) e a denotamos M[(𝑏0 = 0 , 𝑐0 < 0)].
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Figura 6: M[(𝑏0 = 0, 𝑐0 > 0)]

Fonte: Yamaoka (2023, p. 44)

Figura 7: M[(𝑏0 = 0, 𝑐0 < 0)]

Fonte: Yamaoka (2023, p. 45)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras 6 e 7 (veja 6.1
a2)). Observamos que estes 2 modelos apresentam uma “estrutura”comum (molde 2) sobre a qual
repousam os caminhos das duas raı́zes, exposta na Figura 8, e a denotamos MOL

[ (
𝑏0 = 0 , 𝑐0 > 0

)
,
(
𝑏0 = 0 , 𝑐0 < 0

) ]
.

Examinemos o número de componentes conexas do molde 2 da Figura 8 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 8.

Figura 8: MOL
[ (
𝑏0 = 0 , 𝑐0 > 0

)
,
(
𝑏0 = 0 , 𝑐0 < 0

) ]

Fonte: elaborada pelo autor

Pelo Teorema 2.1, ] −∞, 0[ e ]0, +∞[ são conexos. Do Exemplo 2.1, {0} ⊂ R é conexo. Segue
do Corolário 2.2 que𝐶1

.
=]−∞, 0[×{0},𝐶2

.
=]0, +∞[×{0},𝐶3

.
= {0}×]−∞, 0[ e𝐶4

.
= {0}×]0, +∞[

são conexos. Agora, 𝑚2
.
= 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 é reunião disjunta de 𝐶1, 𝐶2, 𝐶3, 𝐶4, pois

𝐶1 ∩𝐶2 = (] −∞, 0[×{0}) ∩ (]0, +∞[×{0}) P.2)
= (] −∞, 0[∩]0, +∞[) × ({0} ∩ {0}) = ∅× {0} P.1)

= ∅.

𝐶1 ∩𝐶3 = (] −∞, 0[×{0}) ∩ ({0}×] −∞, 0[) P.2)
= (] −∞, 0[∩{0}) × ({0}∩] −∞, 0[) = ∅ × ∅ P.1)

= ∅.

𝐶1 ∩ 𝐶4 = (] − ∞, 0[×{0}) ∩ ({0}×]0, +∞[) P.2)
= (] − ∞, 0[∩{0}) × ({0}∩]0, +∞[) = ∅ × ∅ P.1)

= ∅.

𝐶2 ∩ 𝐶3 = (]0, +∞[×{0}) ∩ ({0}×] − ∞[, 0) P.2)
= (]0, +∞[∩{0}) × ({0}∩] − ∞, 0[) = ∅ × ∅ P.1)

= ∅.

𝐶2 ∩ 𝐶4 = (]0, +∞[×{0}) ∩ ({0}×]0, +∞[) P.2)
= (]0, +∞[∩{0}) × ({0}∩]0, +∞[) = ∅ × ∅ P.1)

= ∅.

𝐶3 ∩𝐶4 = ({0}×] −∞, 0[) ∩ ({0}×]0, +∞[) P.2)
= ({0} ∩ {0}) × (] −∞, 0[∩]0, +∞[) = {0} × ∅ P.1)

= ∅.

Em Yamaoka (2023), para o subcaso (𝑏0 > 0 , 𝑐0 = 0) determinamos os caminhos da primeira
e da segunda raı́zes representados na Figura 9(modelo) e a denotamos M[(𝑏0 > 0 , 𝑐0 = 0)]. Para
(𝑏0 < 0, 𝑐0 = 0),os caminhos estão na Figura 10(modelo) e a denotamos M[(𝑏0 < 0 , 𝑐0 = 0)].
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Figura 9: M[(𝑏0 > 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 46)

Figura 10: M[(𝑏0 < 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 46)

Definamos o Estilo 3 como o conjunto formado pelos 2 modelos das Figuras 9 e 10 (veja 6.1
a3)). Observamos que estes 2 modelos apresentam uma “estrutura”comum (molde 3) sobre a qual
repousam os caminhos das duas raı́zes, exposta na Figura 11, e a denotamos MOL

[ (
𝑏0 > 0 , 𝑐0 = 0

)
,
(
𝑏0 < 0 , 𝑐0 = 0

) ]
.

Estudemos o número de componentes conexas do molde 3 da Figura 11 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 11.

Figura 11: MOL
[ (
𝑏0 > 0 , 𝑐0 = 0

)
,
(
𝑏0 < 0 , 𝑐0 = 0

) ]

Fonte: elaborada pelo autor

Definimos 𝐶1 =] − ∞, 0[ e 𝐶2 =]0, +∞[. Note que 𝐶1 ∪ 𝐶2 é o conjunto sobre o qual repousa o
caminho de uma das duas raı́zes; a outra raiz é o conjunto {0}. Pelo Corolário 2.3, 𝐶̄1 =] − ∞, 0] é
conexo e 𝐶̄2 = [0, +∞[ é conexo. Pelo Teorema 2.3, a reunião 𝑚3 dos subconjuntos conexos 𝐶̄1 e 𝐶̄2
com o ponto comum {0} é um conjunto conexo. Portanto, o eixo real é a única componente conexa
de 𝑚3.

Em Yamaoka (2023), para o subcaso (𝑏0 = 0 , 𝑐0 = 0) determinamos os caminhos da primeira
e da segunda raı́zes (𝑧1(𝑎) = 𝑧2(𝑎) = 0,∀𝑎 ∈ R∗), cujo modelo é denotado M[(𝑏0 = 0 , 𝑐0 = 0)].
Neste caso, o molde 4, denotado MOL

[ (
𝑏0 = 0 , 𝑐0 = 0

) ]
, está representado na Figura 12.

Figura 12: MOL
[ (
𝑏0 = 0 , 𝑐0 = 0

) ]

Fonte: elaborada pelo autor

Definamos o Estilo 4 como o conjunto constituı́do pelo modelo denotado M
[ (
𝑏0 = 0 , 𝑐0 = 0

) ]
.

O conjunto 𝑚4
.
= {0} é a única componente conexa (veja também 6.3).

4 Segundo caso
Em Yamaoka (2023), para o subcaso (𝑎0 > 0 , 𝑐0 > 0) determinamos os caminhos da primeira

e da segunda raı́zes representados na Figura 13(modelo) e a denotamos M[(𝑎0 > 0 , 𝑐0 > 0)]. Para
(𝑎0 < 0 , 𝑐0 < 0),os caminhos estão na Figura 14(modelo) e denotada M[(𝑎0 < 0 , 𝑐0 < 0)].
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Figura 13: M[(𝑎0 > 0 , 𝑐0 > 0)]

Fonte: Yamaoka (2023, p. 50)

Figura 14: M[(𝑎0 < 0 , 𝑐0 < 0)]

Fonte: Yamaoka (2023, p. 51)

Definamos o Estilo 1 como o conjunto formado pelos 2 modelos das Figuras 13 e 14 (veja 6.1 b1)).
Os 2 modelos apresentam uma “estrutura”comum (molde 1) sobre a qual repousam os caminhos das
duas raı́zes, que é exposta na Figura 15 e denotada MOL

[ (
𝑎0 > 0 , 𝑐0 > 0

)
,
(
𝑎0 < 0 , 𝑐0 < 0

) ]
.

Examinemos o número de componentes conexas do molde 1 da Figura 15 (veja também 6.3). O
eixo 𝑥 deve estar orientado para a direita e o eixo 𝑦 para cima na Figura 15.

Figura 15: MOL
[ (
𝑎0 > 0 , 𝑐0 > 0

)
,
(
𝑎0 < 0 , 𝑐0 < 0

) ]

Fonte: elaborada pelo autor

Sejam 𝐶1
.
=] − ∞,−

√︁
𝑐0/𝑎0] × {0}, 𝐶2

.
= [−

√︁
𝑐0/𝑎0, 0[×{0}, 𝐶3

.
=]0,

√︁
𝑐0/𝑎0] × {0}, 𝐶4

.
=

[
√︁
𝑐0/𝑎0, +∞[×{0}. Pelo Teorema 2.1, ]−∞,−

√︁
𝑐0/𝑎0], [−

√︁
𝑐0/𝑎0, 0[, ]0,

√︁
𝑐0/𝑎0] e [

√︁
𝑐0/𝑎0, +∞[

são conexos. Do Exemplo 2.1, {0} ⊂ R é conexo. Resulta do Corolário 2.2 que 𝐶1, 𝐶2, 𝐶3 e 𝐶4 são
conexos.

Seja 𝑓 : [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0] → R2 dada por 𝑓 (𝑥) =

(
𝑥,

√︁
(𝑐0/𝑎0) − 𝑥2

)
. Como as funções reais

𝑥 e
√︁
(𝑐0/𝑎0) − 𝑥2 são contı́nuas, vem do Corolário 2.1 que 𝑓 é contı́nua. Como [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]

é conexo e 𝑓 é contı́nua, segue do Teorema 2.2 que 𝑓 ( [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) é conexo.

Seja 𝑓1 : [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0] → R2, 𝑓1(𝑥) =

(
𝑥,−

√︁
(𝑐0/𝑎0) − 𝑥2

)
. Como [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]

é conexo e 𝑓1 é contı́nua, segue novamente do Teorema 2.2 que 𝑓1( [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) é conexo.
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Pelo Teorema 2.3, a reunião 𝑎𝑢𝑥 dos subconjuntos conexos 𝐶1, 𝐶2, 𝑓 ( [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) e

𝑓1( [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) - isto é, ] −∞,−

√︁
𝑐0/𝑎0] × {0}, [−

√︁
𝑐0/𝑎0, 0[×{0}, 𝑓 ( [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0])

e 𝑓1( [−
√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) - com o ponto comum (−

√︁
𝑐0/𝑎0, 0), onde −

√︁
𝑐0/𝑎0 é uma raiz dupla, é

um conjunto conexo.
Finalmente, pelo Teorema 2.3, a reunião 𝑚1 dos subconjuntos conexos 𝐶3, 𝐶4, 𝑎𝑢𝑥 - isto é,

]0,
√︁
𝑐0/𝑎0] × {0}, [

√︁
𝑐0/𝑎0, +∞[×{0}, 𝐶1∪𝐶2∪ 𝑓 ( [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) ∪ 𝑓1( [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0])

- com o ponto comum (
√︁
𝑐0/𝑎0, 0), onde

√︁
𝑐0/𝑎0 é uma raiz dupla, é um conjunto conexo. Portanto,

𝑚1 é a única componente conexa.

Em Yamaoka (2023), para o subcaso (𝑎0 > 0 , 𝑐0 < 0) determinamos os caminhos da primeira
e da segunda raı́zes representados na Figura 16(modelo) e a denotamos M[(𝑎0 > 0 , 𝑐0 < 0)]. Para
(𝑎0 < 0 , 𝑐0 > 0),os caminhos estão na Figura 17(modelo) e denotada M[(𝑎0 < 0 , 𝑐0 > 0)].

Figura 16: M[(𝑎0 > 0 , 𝑐0 < 0)]

Fonte: Yamaoka (2023, p. 52)

Figura 17: M[(𝑎0 < 0 , 𝑐0 > 0)]

Fonte: Yamaoka (2023, p. 52)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras 16 e 17 (veja 6.1 b2)).
Os 2 modelos apresentam uma “estrutura”comum (molde 2) sobre a qual repousam os caminhos das
duas raı́zes, que é exposta na Figura 18 e denotada MOL

[ (
𝑎0 > 0 , 𝑐0 < 0

)
,
(
𝑎0 < 0 , 𝑐0 > 0

) ]
.

Examinemos o número de componentes conexas do molde 2 da Figura 18 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 18.

Figura 18: MOL
[ (
𝑎0 > 0 , 𝑐0 < 0

)
,
(
𝑎0 < 0 , 𝑐0 > 0

) ]

Fonte: elaborada pelo autor

Seja 𝑚2
.
=] − ∞, 0[∪]0, +∞[. Pelo Teorema 2.1, ] − ∞, 0[ e ]0, +∞[ são conexos. Como

] − ∞, 0[∩]0, +∞[= ∅ resulta que 𝑚2 é a reunião disjunta das componentes conexas ] − ∞, 0[ e
]0, +∞[.

Em Yamaoka (2023), para o subcaso (𝑎0 > 0 , 𝑐0 = 0) determinamos os caminhos da primeira e
da segunda raı́zes representados nas Figuras 19 e 20(modelo) e as denotamos M[(𝑎0 > 0 , 𝑐0 = 0)].
Para (𝑎0 < 0 , 𝑐0 = 0), eles estão nas Figuras 21 e 22(modelo) e as denotamos M[(𝑎0 < 0 , 𝑐0 = 0)].
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Figura 19: M[(𝑎0 > 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 53)

Figura 20: M[(𝑎0 > 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 53)

Figura 21: M[(𝑎0 < 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 54)

Figura 22: M[(𝑎0 < 0 , 𝑐0 = 0)]

Fonte: Yamaoka (2023, p. 54)

Definamos o Estilo 3 como o conjunto formado pelo modelo das Figuras 19 e 20 e pelo modelo das
Figuras 21 e 22 (veja 6.1 b3)). Observamos que estes 2 modelos apresentam uma “estrutura”comum
(molde 3) sobre a qual repousam os caminhos das duas raı́zes, que é exposta na Figura 23, e a
denotamos MOL

[ (
𝑎0 > 0 , 𝑐0 = 0

)
,
(
𝑎0 < 0 , 𝑐0 = 0

) ]
.

Examinemos o número de componentes conexas do molde 3 da Figura 23 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 23.

Figura 23: MOL
[ (
𝑎0 > 0 , 𝑐0 = 0

)
,
(
𝑎0 < 0 , 𝑐0 = 0

) ]

Fonte: elaborada pelo autor

Sejam ] − ∞, 0] e [0, +∞[. Pelo Teorema 2.1, ] − ∞, 0] e [0, +∞[ são conexos. Pelo Teorema
2.3, a reunião 𝑚3 dos subconjuntos conexos ] − ∞, 0] e [0, +∞[ com o ponto comum 0 - raiz dupla
- é um conjunto conexo, ou seja, 𝑚3 = R é a única componente conexa.

5 Terceiro caso
Em Yamaoka (2023), para o subcaso (𝑎0 > 0 , 𝑏0 > 0) determinamos os caminhos da primeira

e da segunda raı́zes e o denotamos como modelo M[(𝑎0 > 0 , 𝑏0 > 0)]. Para (𝑎0 > 0 , 𝑏0 < 0),
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denotamos o subcaso como modelo M[(𝑎0 > 0 , 𝑏0 < 0)]. Para (𝑎0 < 0 , 𝑏0 < 0), denotamos o
subcaso como modelo M[(𝑎0 < 0 , 𝑏0 < 0)]. E para (𝑎0 < 0 , 𝑏0 > 0), denotamos o subcaso como
modelo M[(𝑎0 < 0 , 𝑏0 > 0)].

A Figura 24 representa modelos simétricos correspondentes. Olhando de frente, quando o eixo
𝑦 está à direita, temos M[(𝑎0 > 0 , 𝑏0 > 0)]. Quando está à esquerda, temos M[(𝑎0 > 0 , 𝑏0 < 0)].

A Figura 25 representa modelos simétricos correspondentes. Olhando de frente, quando o eixo
𝑦 está à direita, temos M[(𝑎0 < 0 , 𝑏0 < 0)]. Quando está à esquerda, temos M[(𝑎0 < 0 , 𝑏0 > 0)].

Figura 24:
Modelos simétricos 1

Fonte: elaborada pelo autor

Figura 25:
Modelos simétricos 2

Fonte: elaborada pelo autor

Definamos o Estilo 1 como o conjunto formado pelos 4 modelos das Figuras 24 e 25 (veja 6.1 c1)).
Estes 4 modelos apresentam uma “estrutura”comum (molde 1) sobre a qual repousam os caminhos
das duas raı́zes, exposta na Figura 26 e denotada MOL

[ (
𝑎0 > 0 , 𝑏0 > 0

)
,
(
𝑎0 > 0 , 𝑏0 < 0

)
,(

𝑎0 < 0 , 𝑏0 < 0
)

,
(
𝑎0 < 0 , 𝑏0 > 0

) ]
.

Estudemos o número de componentes conexas do molde 1 da Figura 26 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 26.

Figura 26: MOL
[ (
𝑎0 > 0 , 𝑏0 > 0

)
,
(
𝑎0 > 0 , 𝑏0 < 0

)
,
(
𝑎0 < 0 , 𝑏0 < 0

)
,
(
𝑎0 < 0 , 𝑏0 > 0

) ]

Fonte: elaborada pelo autor

Pelo Teorema 2.1, ] − ∞,−𝑏0/2𝑎0], [−𝑏0/2𝑎0, +∞[, ] − ∞, 0[ e ]0, +∞[ são conexos. Pelo
Corolário 2.3, ] − ∞, 0] e [0, +∞[ são conexos. Do Exemplo 2.1, {0} ⊂ R e {−𝑏0/2𝑎0} são
conexos. Segue do Corolário 2.2 que 𝐶1

.
=] − ∞,−𝑏0/2𝑎0] × {0}, 𝐶2

.
= [−𝑏0/2𝑎0, +∞[×{0},

𝐶3
.
= {−𝑏0/2𝑎0}×] − ∞, 0] e 𝐶4

.
= {−𝑏0/2𝑎0} × [0, +∞[ são conexos. Pelo Teorema 2.3, a reunião

𝑚1 dos subconjuntos conexos 𝐶1, 𝐶2, 𝐶3 e 𝐶4 com o ponto comum (−𝑏0/2𝑎0, 0), onde −𝑏0/2𝑎0 é a
raiz dupla, é um conjunto conexo, ou seja, 𝑚1 é a única componente conexa.
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Em Yamaoka (2023), para o subcaso (𝑎0 > 0 , 𝑏0 = 0) determinamos os caminhos da primeira
e da segunda raı́zes representados na Figura 27(modelo) denotada M[(𝑎0 > 0 , 𝑏0 = 0)]. Para
(𝑎0 < 0 , 𝑏0 = 0),os caminhos estão na Figura 28(modelo) denotada M[(𝑎0 < 0 , 𝑏0 = 0)].

Figura 27:
M[(𝑎0 > 0 , 𝑏0 = 0)]

Fonte: Yamaoka (2023, p. 58)

Figura 28:
M[(𝑎0 < 0 , 𝑏0 = 0)]

Fonte: Yamaoka (2023, p. 58)

Definamos o Estilo 2 como o conjunto formado pelos 2 modelos das Figuras 27 e 28 (veja 6.1 c2)).
Os 2 modelos apresentam uma “estrutura”comum (molde 2) sobre a qual repousam os caminhos das
duas raı́zes, exposta na Figura 29 e denotada MOL

[ (
𝑎0 > 0 , 𝑏0 = 0

)
,
(
𝑎0 < 0 , 𝑏0 = 0

) ]
.

Estudemos o número de componentes conexas do molde 2 da Figura 29 (veja também 6.3).
Imaginemos que o eixo 𝑥 esteja orientado para a direita e o eixo 𝑦 para cima na Figura 29.

Pelo Teorema 2.1, ] − ∞, 0], [0, +∞[, ] − ∞, 0[ e ]0, +∞[ são conexos. Pelo Corolário 2.3, o
fecho de ] − ∞, 0[, que é ] − ∞, 0], e o fecho de ]0, +∞[, que é [0, +∞[, são conexos. Do Exemplo
2.1, {0} ⊂ R é conexo. Segue do Corolário 2.2 que 𝐶1

.
=] − ∞, 0] × {0}, 𝐶2

.
= [0, +∞[×{0},

𝐶3
.
= {0}×] − ∞, 0] e 𝐶4

.
= {0} × [0, +∞[ são conexos. Pelo Teorema 2.3, a reunião 𝑚2 dos

subconjuntos conexos 𝐶1, 𝐶2, 𝐶3 e 𝐶4 com o ponto comum (0, 0), onde o primeiro 0 é a raiz dupla,
é um conjunto conexo, ou seja, 𝑚2 é a única componente conexa.

Figura 29: MOL
[ (

𝑎0 > 0 , 𝑏0 = 0
)

,
(
𝑎0 < 0 , 𝑏0 = 0

) ]

Fonte: elaborada pelo autor
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6 Apêndice

6.1 Estilos
Aqui estabelecemos as relações existentes entre dois modelos distintos quaisquer de um mesmo

estilo.

a) Primeiro caso

a1) Estilo 1

Definamos
modelo 1 : M[(𝑏01 > 0 , 𝑐01 > 0)]
modelo 2 : M[(𝑏02 < 0 , 𝑐02 > 0)]
modelo 3 : M[(𝑏03 > 0 , 𝑐03 < 0)]
modelo 4 : M[(𝑏04 < 0 , 𝑐04 < 0)] .

Façamos
𝑏02 = −𝑏01 , 𝑐02 = 𝑐01
𝑏03 = 𝑏01 , 𝑐03 = −𝑐01
𝑏04 = −𝑏01 , 𝑐04 = −𝑐01

𝑏03 = −𝑏02 , 𝑐03 = −𝑐02
𝑏04 = 𝑏02 , 𝑐04 = −𝑐02

𝑏04 = −𝑏03 , 𝑐04 = 𝑐03 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 1, 2, 3, 4, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existem
(4
2
)
= 6 relações. Temos, ∀𝑎 ∈ R∗,

𝑧1,2(𝑎) = −𝑧2,1(𝑎) e 𝑧2,2(𝑎) = −𝑧1,1(𝑎) (Relação entre o modelo 1 e o modelo 2)
𝑧1,3(𝑎) = −𝑧1,1(−𝑎) e 𝑧2,3(𝑎) = −𝑧2,1(−𝑎) (Relação entre o modelo 1 e o modelo 3)
𝑧1,4(𝑎) = 𝑧2,1(−𝑎) e 𝑧2,4(𝑎) = 𝑧1,1(−𝑎) (Relação entre o modelo 1 e o modelo 4)

𝑧1,3(𝑎) = 𝑧2,2(−𝑎) e 𝑧2,3(𝑎) = 𝑧1,2(−𝑎) (Relação entre o modelo 2 e o modelo 3)
𝑧1,4(𝑎) = −𝑧1,2(−𝑎) e 𝑧2,4(𝑎) = −𝑧2,2(−𝑎) (Relação entre o modelo 2 e o modelo 4)

𝑧1,4(𝑎) = −𝑧2,3(𝑎) e 𝑧2,4(𝑎) = −𝑧1,3(𝑎) (Relação entre o modelo 3 e o modelo 4).

Provemos a relação entre o modelo 1 e o modelo 2 acima (as demais são similares): ∀𝑎 ∈ R∗ ,

𝑧1,2(𝑎) =
−𝑏02 +

√︃
𝑏2

02 − 4𝑎𝑐02

2𝑎
=
𝑏01 +

√︃
𝑏2

01 − 4𝑎𝑐01

2𝑎
= −

©­­«
−𝑏01 −

√︃
𝑏2

01 − 4𝑎𝑐01

2𝑎
ª®®¬ = −𝑧2,1(𝑎) ,

(1)

𝑧2,2(𝑎) =
−𝑏02 −

√︃
𝑏2

02 − 4𝑎𝑐02

2𝑎
=
𝑏01 −

√︃
𝑏2

01 − 4𝑎𝑐01

2𝑎
= −

©­­«
−𝑏01 +

√︃
𝑏2

01 − 4𝑎𝑐01

2𝑎
ª®®¬ = −𝑧1,1(𝑎) ,

(2)

a2) Estilo 2

Definamos

YAMAOKA, L. C. Os caminhos das raı́zes da função quadrática - molde, modelo e estilo. C.Q.D. – Revista Eletrônica Paulista de Matemática,
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modelo 5 : M[(𝑏05 = 0 , 𝑐05 > 0)]
modelo 6 : M[(𝑏06 = 0 , 𝑐06 < 0)] .

Façamos
𝑏06 = 𝑏05 , 𝑐06 = −𝑐05 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 5, 6, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑎 ∈ R∗,

𝑧1,6(𝑎) = 𝑧2,5(−𝑎) = −𝑧1,5(−𝑎) e 𝑧2,6(𝑎) = 𝑧1,5(−𝑎) = −𝑧2,5(−𝑎) .

a3) Estilo 3

Definamos
modelo 7 : M[(𝑏07 > 0 , 𝑐07 = 0)]
modelo 8 : M[(𝑏08 < 0 , 𝑐08 = 0)] .

Façamos
𝑏08 = −𝑏07 , 𝑐08 = 𝑐07 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 7, 8, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑎 ∈ R∗,

𝑧1,8(𝑎) = −𝑧2,7(𝑎) e 𝑧2,8(𝑎) = −𝑧1,7(𝑎) = 0 .

b) Segundo caso

b1) Estilo 1

Definamos
modelo 1 : M[(𝑎01 > 0 , 𝑐01 > 0)]
modelo 2 : M[(𝑎02 < 0 , 𝑐02 < 0)] .

Façamos
𝑎02 = −𝑎01 , 𝑐02 = −𝑐01 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 1, 2, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑏 ∈ R,

𝑧1,2(𝑏) = −𝑧1,1(𝑏) e 𝑧2,2(𝑏) = −𝑧2,1(𝑏) .

b2) Estilo 2

Definamos
modelo 3 : M[(𝑎03 > 0 , 𝑐03 < 0)]
modelo 4 : M[(𝑎04 < 0 , 𝑐04 > 0)] .

Façamos
𝑎04 = −𝑎03 , 𝑐04 = −𝑐03 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 3, 4, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑏 ∈ R,

𝑧1,4(𝑏) = −𝑧1,3(𝑏) e 𝑧2,4(𝑏) = −𝑧2,3(𝑏) .

b3) Estilo 3
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Definamos
modelo 5 : M[(𝑎05 > 0 , 𝑐05 = 0)]
modelo 6 : M[(𝑎06 < 0 , 𝑐06 = 0)] .

Façamos
𝑎06 = −𝑎05 , 𝑐06 = 𝑐05 = 0 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 5, 6, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑏 ∈ R,

𝑧1,6(𝑏) = −𝑧1,5(𝑏) e 𝑧2,6(𝑏) = −𝑧2,5(𝑏) .

c) Terceiro caso

c1) Estilo 1

Definamos
modelo 1 : M[(𝑎01 > 0 , 𝑏01 > 0)]
modelo 2 : M[(𝑎02 > 0 , 𝑏02 < 0)]
modelo 3 : M[(𝑎03 < 0 , 𝑏03 < 0)]
modelo 4 : M[(𝑎04 < 0 , 𝑏04 > 0)] .

Façamos
𝑎02 = 𝑎01 , 𝑏02 = −𝑏01
𝑎03 = −𝑎01 , 𝑏03 = −𝑏01
𝑎04 = −𝑎01 , 𝑏04 = 𝑏01

𝑎03 = −𝑎02 , 𝑏03 = 𝑏02
𝑎04 = −𝑎02 , 𝑏04 = −𝑏02

𝑎04 = 𝑎03 , 𝑏04 = −𝑏03 .
Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 1, 2, 3, 4, para denotar a 𝑗-ésima raiz do modelo 𝑘 .
Existem

(4
2
)
= 6 relações. Temos, ∀𝑐 ∈ R,

𝑧1,2(𝑐) = −𝑧2,1(𝑐) e 𝑧2,2(𝑐) = −𝑧1,1(𝑐) (Relação entre o modelo 1 e o modelo 2)
𝑧1,3(𝑐) = 𝑧2,1(−𝑐) e 𝑧2,3(𝑐) = 𝑧1,1(−𝑐) (Relação entre o modelo 1 e o modelo 3)
𝑧1,4(𝑐) = −𝑧1,1(−𝑐) e 𝑧2,4(𝑐) = −𝑧2,1(−𝑐) (Relação entre o modelo 1 e o modelo 4)
𝑧1,3(𝑐) = −𝑧1,2(−𝑐) e 𝑧2,3(𝑐) = −𝑧2,2(−𝑐) (Relação entre o modelo 2 e o modelo 3)
𝑧1,4(𝑐) = 𝑧2,2(−𝑐) e 𝑧2,4(𝑐) = 𝑧1,2(−𝑐) (Relação entre o modelo 2 e o modelo 4)
𝑧1,4(𝑐) = −𝑧2,3(𝑐) e 𝑧2,4(𝑐) = −𝑧1,3(𝑐) (Relação entre o modelo 3 e o modelo 4).

c2) Estilo 2

Definamos
modelo 5 : M[(𝑎05 > 0 , 𝑏05 = 0)]
modelo 6 : M[(𝑎06 < 0 , 𝑏06 = 0)] .

Façamos
𝑎06 = −𝑎05 , 𝑏06 = 𝑏05 = 0 .

Usemos a notação 𝑧 𝑗 ,𝑘 , 𝑗 = 1, 2, 𝑘 = 5, 6, para denotar a 𝑗-ésima raiz do modelo 𝑘 .

Existe
(2
2
)
= 1 relação. Temos, ∀𝑐 ∈ R,

𝑧1,6(𝑐) = 𝑧2,5(−𝑐) = −𝑧1,5(−𝑐) e 𝑧2,6(𝑐) = 𝑧1,5(−𝑐) = −𝑧2,5(−𝑐) .
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6.2 Exemplos
1) Molde sobre o qual repousam as raı́zes de 𝑓𝑎 (𝑧) = 𝑎𝑧2 +− 3𝑧 +− 7 , 𝑎 ∈ R∗ .

Figura 30: MOL
[ (
𝑏0 = +3, 𝑐0 = +7

)
,
(
𝑏0 = −3, 𝑐0 = +7

)
,
(
𝑏0 = +3, 𝑐0 = −7

)
,
(
𝑏0 = −3, 𝑐0 = −7

) ]
. Temos + 7

3 e + 14
3

quando (𝑏0 = −3, 𝑐0 = +7) ou (𝑏0 = +3, 𝑐0 = −7); e temos − 7
3 e − 14

3 quando (𝑏0 = +3, 𝑐0 = +7) ou (𝑏0 = −3, 𝑐0 = −7).

Fonte: elaborada pelo autor

2) Molde sobre o qual repousam as raı́zes de 𝑓𝑎 (𝑧) = 𝑎𝑧2 +− 7 , 𝑎 ∈ R∗ .

Figura 31: MOL
[ (
𝑏0 = 0 , 𝑐0 = 7

)
,
(
𝑏0 = 0 , 𝑐0 = −7

) ]

Fonte: elaborada pelo autor

3) Molde sobre o qual repousam as raı́zes de 𝑓𝑎 (𝑧) = 𝑎𝑧2 +− 3𝑧 , 𝑎 ∈ R∗ .

Figura 32: MOL
[ (
𝑏0 = +3 , 𝑐0 = 0

)
,
(
𝑏0 = −3 , 𝑐0 = 0

) ]
Fonte: elaborada pelo autor

4) Molde sobre o qual repousam as raı́zes de 𝑓𝑏 (𝑧) = +3𝑧2+𝑏𝑧+7 ou de 𝑓𝑏 (𝑧) = −3𝑧2+𝑏𝑧−7 , 𝑏 ∈
R .

Figura 33: MOL
[ (
𝑎0 = +3 , 𝑐0 = +7

)
,
(
𝑎0 = −3 , 𝑐0 = −7

) ]

Fonte: elaborada pelo autor
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5) Molde sobre o qual repousam as raı́zes de 𝑓𝑏 (𝑧) = +3𝑧2+𝑏𝑧−7 ou de 𝑓𝑏 (𝑧) = −3𝑧2+𝑏𝑧+7 , 𝑏 ∈
R .

Figura 34: MOL
[ (
𝑎0 = +3 , 𝑐0 = −7

)
,
(
𝑎0 = −3 , 𝑐0 = +7

) ]

Fonte: elaborada pelo autor

6) Molde sobre o qual repousam as raı́zes de 𝑓𝑏 (𝑧) = +− 3𝑧2 + 𝑏𝑧 , 𝑏 ∈ R .

Figura 35: MOL
[ (
𝑎0 = +3 , 𝑐0 = 0

)
,
(
𝑎0 = −3 , 𝑐0 = 0

) ]

Fonte: elaborada pelo autor

7) Molde sobre o qual repousam as raı́zes de 𝑓𝑐 (𝑧) = +− 7𝑧2 +− 3𝑧 + 𝑐 , 𝑐 ∈ R .

Figura 36: MOL
[ (
𝑎0 = +7, 𝑏0 = +3

)
,
(
𝑎0 = +7, 𝑏0 = −3

)
,
(
𝑎0 = −7, 𝑏0 = −3

)
,
(
𝑎0 = −7, 𝑏0 = +3

) ]
. Temos + 3

14 quando
(𝑎0 = +7, 𝑏0 = −3) ou (𝑎0 = −7, 𝑏0 = +3), e temos − 3

14 quando (𝑎0 = +7, 𝑏0 = +3) ou (𝑎0 = −7, 𝑏0 = −3).

Fonte: elaborada pelo autor

8) Molde sobre o qual repousam as raı́zes de 𝑓𝑐 (𝑧) = +− 7𝑧2 + 𝑐 , 𝑐 ∈ R .

Figura 37: MOL
[ (
𝑎0 = +7 , 𝑏0 = 0

)
,
(
𝑎0 = −7 , 𝑏0 = 0

) ]

Fonte: elaborada pelo autor
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6.3 Componentes conexas
Aqui provaremos que as componentes conexas de um molde são abertas e fechadas no molde.
Antes, vamos recordar:

Lema 6.1 “Seja 𝑋 ⊂ R𝑛. Um conjunto 𝐴 ⊂ 𝑋 é aberto em 𝑋 se, e somente se, existe um aberto
𝐵 ⊂ R𝑛 tal que 𝐴 = 𝑋 ∩ 𝐵”(Lima, 2000, p. 36).

Teorema 6.1 (Lima, 2000, p. 36) Vale para os abertos em 𝑋:

1. ∅ e 𝑋 são abertos em 𝑋 .

2. Uma interseção finita e uma reunião qualquer de abertos em 𝑋 é um conjunto aberto em 𝑋 .

Lema 6.2 “Se 𝐴 ⊂ R𝑚 e 𝐵 ⊂ R𝑛 são abertos então o produto cartesiano 𝐴 × 𝐵 ⊂ R𝑚+𝑛 é
aberto”(Lima, 2000, p. 37).

Teorema 6.2 “Seja 𝐹 ⊂ 𝑋 . A fim de que 𝐹 seja fechado em 𝑋 é necessário e suficiente que o
conjunto 𝑋 − 𝐹 (complementar de 𝐹 relativamente a 𝑋) seja aberto em 𝑋”(Lima, 2000, p. 41).

Lema 6.3 “Se 𝐹 ⊂ R𝑚 e 𝐺 ⊂ R𝑛 são fechados então o produto cartesiano 𝐹 × 𝐺 ⊂ R𝑚+𝑛 é
fechado”(Lima, 2000, p. 42).

a) Primeiro caso
Vimos que, supondo o eixo 𝑥 orientado para a esquerda e o eixo 𝑦 para cima, o molde 1

é a reunião disjunta 𝑚1
.
= 𝐶1 ∪ 𝐶2 ∪ 𝐶3, onde 𝐶1

.
=]0, +∞[×{0}, 𝐶2

.
=

]
− 𝑐0

𝑏0
, 0

[
× {0} e 𝐶3

.
=( [

−2𝑐0
𝑏0
,− 𝑐0

𝑏0

[
× {0}

)
∪

(]
−∞,−2𝑐0

𝑏0

]
× {0}

)
∪ 𝑓

( [
−2𝑐0

𝑏0
, 0

[)
∪ 𝑓1

( [
−2𝑐0

𝑏0
, 0

[)
.

Seja 𝜖 > 0. Pelo Lema 6.2, ]0, +∞[×] − 𝜖, +𝜖 [ é aberto em R2. Temos 𝐶1 = 𝑚1 ∩ (]0, +∞[×] −
𝜖, +𝜖 [). Pelo Lema 6.1,𝐶1 ⊂ 𝑚1 é aberto em𝑚1. Agora, tomamos a bola aberta 𝐵

(
− 𝑐0

2𝑏0
; 𝑐0

2𝑏0

)
⊂ R2.

Temos 𝐶2 = 𝑚1 ∩ 𝐵

(
− 𝑐0

2𝑏0
; 𝑐0

2𝑏0

)
. Pelo Lema 6.1, 𝐶2 ⊂ 𝑚1 é aberto em 𝑚1. Sabemos que

[−𝑐0/𝑏0, +∞[ é fechado em R e {0} ⊂ R é fechado em R. Pelo Lema 6.3, [−𝑐0/𝑏0, +∞[×{0}
é fechado em R2 e, pelo Teorema 6.2, R2 − ([−𝑐0/𝑏0, +∞[×{0}) é aberto em R2. Daı́ temos
𝐶3 = 𝑚1 ∩ (R2 − ([−𝑐0/𝑏0, +∞[×{0})) e, pelo Lema 6.1, 𝐶3 ⊂ 𝑚1 é aberto em 𝑚1.

Sejam 𝑗 , 𝑘, 𝑙 ∈ {1, 2, 3}, 𝑗 ≠ 𝑘 ≠ 𝑙. Afirmação: 𝐶 𝑗 é fechado em 𝑚1.
De fato, seja ∁𝑚1𝐶 𝑗 = {(𝑥, 𝑦) ∈ 𝑚1 | (𝑥, 𝑦) ∉ 𝐶 𝑗 } = 𝐶𝑘 ∪ 𝐶𝑙 . Como 𝐶𝑘 ⊂ 𝑚1 e 𝐶𝑙 ⊂ 𝑚1 são

abertos em 𝑚1, por 2. do Teorema 6.1 ∁𝑚1𝐶 𝑗 é aberto em 𝑚1. Pelo Teorema 6.2, 𝐶 𝑗 é fechado em
𝑚1.

Vimos que o molde 2 (𝑚2
.
= 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4) é a reunião disjunta das componentes conexas

𝐶1
.
=] − ∞, 0[×{0}, 𝐶2

.
=]0, +∞[×{0}, 𝐶3

.
= {0}×] − ∞, 0[ e 𝐶4

.
= {0}×]0, +∞[.

Seja 𝜖 > 0. Pelo Lema 6.2, ] − ∞, 0[×] − 𝜖, +𝜖 [, ]0, +∞[×] − 𝜖, +𝜖 [, ] − 𝜖, +𝜖 [×] − ∞, 0[ e
] − 𝜖, +𝜖 [×]0, +∞[ são abertos em R2. Pelo Lema 6.1, 𝐶1 = 𝑚2 ∩ (] − ∞, 0[×] − 𝜖, +𝜖 [) ⊂ 𝑚2,
𝐶2 = 𝑚2 ∩ (]0, +∞[×] − 𝜖, +𝜖 [) ⊂ 𝑚2, 𝐶3 = 𝑚2 ∩ (] − 𝜖, +𝜖 [×] − ∞, 0[) ⊂ 𝑚2 e 𝐶4 = 𝑚2 ∩ (] −
𝜖, +𝜖 [×]0, +∞[) ⊂ 𝑚2 são abertos em 𝑚2.

Sejam 𝑗 , 𝑘, 𝑙, 𝑛 ∈ {1, 2, 3, 4}, 𝑗 ≠ 𝑘 ≠ 𝑙 ≠ 𝑛. Afirmação: 𝐶 𝑗 é fechado em 𝑚2.
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De fato, seja ∁𝑚2𝐶 𝑗 = {(𝑥, 𝑦) ∈ 𝑚2 | (𝑥, 𝑦) ∉ 𝐶 𝑗 } = 𝐶𝑘 ∪ 𝐶𝑙 ∪ 𝐶𝑛. Como 𝐶𝑘 ⊂ 𝑚2, 𝐶𝑙 ⊂ 𝑚2 e
𝐶𝑛 ⊂ 𝑚2 são abertos em 𝑚2, por 2. do Teorema 6.1 ∁𝑚2𝐶 𝑗 é aberto em 𝑚2. Pelo Teorema 6.2, 𝐶 𝑗 é
fechado em 𝑚2.

Vimos que o molde 3 é 𝑚3
.
= R. Por 1. do Teorema 6.1, 𝑚3 é aberto em 𝑚3. De novo por 1. do

Teorema 6.1, vem que ∁𝑚3𝑚3 = ∅ é aberto em 𝑚3. Daı́, pelo Teorema 6.2, 𝑚3 é fechado em 𝑚3.

Vimos que o molde 4 é 𝑚4
.
= {0}. Por 1. do Teorema 6.1, 𝑚4 é aberto em 𝑚4. De novo por 1.

do Teorema 6.1, vem que ∁𝑚4𝑚4 = ∅ é aberto em 𝑚4. Daı́, pelo Teorema 6.2, 𝑚4 é fechado em 𝑚4.

b) Segundo caso
Vimos que, com o eixo 𝑥 orientado para a direita e o eixo 𝑦 para cima, o molde 1 é a com-

ponente conexa 𝑚1
.
= (]0,

√︁
𝑐0/𝑎0] × {0}) ∪ ([

√︁
𝑐0/𝑎0, +∞[×{0}) ∪ (] − ∞,−

√︁
𝑐0/𝑎0] × {0}) ∪

([−
√︁
𝑐0/𝑎0, 0[×{0}) ∪ 𝑓 ( [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]) ∪ 𝑓1( [−

√︁
𝑐0/𝑎0,

√︁
𝑐0/𝑎0]).

Por 1. do Teorema 6.1, 𝑚1 é aberto em 𝑚1. De novo por 1. do Teorema 6.1, vem que ∁𝑚1𝑚1 = ∅
é aberto em 𝑚1. Daı́, pelo Teorema 6.2, 𝑚1 é fechado em 𝑚1.

Vimos que o molde 2 é a reunião disjunta 𝑚2
.
=] − ∞, 0[∪]0, +∞[. ] − ∞, 0[ é um aberto em R

e temos ] − ∞, 0[= 𝑚2∩] − ∞, 0[. Daı́, pelo Lema 6.1, ] − ∞, 0[⊂ 𝑚2 é aberto em 𝑚2. Por outro
lado, ∁𝑚2] − ∞, 0[=]0, +∞[ é um aberto em R, e temos ]0, +∞[= 𝑚2∩]0, +∞[. Daı́, pelo Lema
6.1, ]0, +∞[⊂ 𝑚2 é aberto em 𝑚2. Logo, pelo Teorema 6.2, ] − ∞, 0[ é fechado em 𝑚2. Como
∁𝑚2]0, +∞[=] − ∞, 0[ é aberto em 𝑚2, segue pelo Teorema 6.2 que ]0, +∞[ é fechado em 𝑚2.

Vimos que o molde 3 é 𝑚3
.
=] −∞, 0] ∪ [0, +∞[= R. Portanto, a justificativa é a mesma da dada

para o molde 3 do Primeiro caso.

c) Terceiro caso
Vimos que o molde 1 é a componente conexa𝑚1

.
= 𝐶1∪𝐶2∪𝐶3∪𝐶4, onde𝐶1

.
=]−∞,−𝑏0/2𝑎0]×

{0}, 𝐶2
.
= [−𝑏0/2𝑎0, +∞[×{0}, 𝐶3

.
= {−𝑏0/2𝑎0}×] − ∞, 0] e 𝐶4

.
= {−𝑏0/2𝑎0} × [0, +∞[.

Por 1. do Teorema 6.1, 𝑚1 é aberto em 𝑚1. De novo por 1. do Teorema 6.1, vem que ∁𝑚1𝑚1 = ∅
é aberto em 𝑚1. Daı́, pelo Teorema 6.2, 𝑚1 é fechado em 𝑚1.

Vimos que o molde 2 é a componente conexa 𝑚2
.
= 𝐶1 ∪𝐶2 ∪𝐶3 ∪𝐶4, onde 𝐶1

.
=] −∞, 0] × {0},

𝐶2
.
= [0, +∞[×{0}, 𝐶3

.
= {0}×] − ∞, 0] e 𝐶4

.
= {0} × [0, +∞[. A justificativa é a mesma da dada

para o molde 1.

6.4 Continuidade e diferenciabilidade
a) Continuidade

a1) Primeiro caso

• M[(𝑏0 > 0, 𝑐0 > 0)]
A primeira raiz é a função 𝑧1 : R∗ → R2 dada por

𝑧1(𝑎) =


((
−𝑏0 +

√︃
𝑏2

0 − 4𝑎𝑐0

) /
2𝑎, 0

)
para 𝑎 < 0 ou 0 < 𝑎 < 𝑏2

0/4𝑐0

(−2𝑐0/𝑏0, 0) para 𝑎 = 𝑏2
0/4𝑐0(

−𝑏0

/
2𝑎,

√︃
4𝑎𝑐0 − 𝑏2

0

/
2𝑎

)
para 𝑎 > 𝑏2

0/4𝑐0 .

(3)
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Sabemos do curso de Cálculo de uma variável real a valores em R que as funções −𝑏0,
𝑏2

0 − 4𝑎𝑐0,
√︃
𝑏2

0 − 4𝑎𝑐0, −𝑏0 +
√︃
𝑏2

0 − 4𝑎𝑐0, 2𝑎,
(
−𝑏0 +

√︃
𝑏2

0 − 4𝑎𝑐0

) /
2𝑎 e a constante 0 são

contı́nuas para 𝑎 < 0 ou 0 < 𝑎 < 𝑏2
0/4𝑐0. Pelo Corolário 2.1,

𝑧1 é contı́nua para 𝑎 < 0 ou 0 < 𝑎 < 𝑏2
0/4𝑐0 . (4)

Temos

lim
𝑎→

𝑏2
0

4𝑐0

− 𝑧1(𝑎) = lim
𝑎→

𝑏2
0

4𝑐0

−

((
−𝑏0 +

√︃
𝑏2

0 − 4𝑎𝑐0

) /
2𝑎, 0

)
= (−2𝑐0/𝑏0, 0) = 𝑧1(𝑏2

0/4𝑐0) (5)

e lim
𝑎→

𝑏2
0

4𝑐0

+
𝑧1(𝑎) = lim

𝑎→
𝑏2

0
4𝑐0

+

(
−𝑏0

/
2𝑎,

√︃
4𝑎𝑐0 − 𝑏2

0

/
2𝑎

)
= (−2𝑐0/𝑏0, 0) = 𝑧1(𝑏2

0/4𝑐0) . (6)

Ou seja,

lim
𝑎→

𝑏2
0

4𝑐0

𝑧1(𝑎) = 𝑧1(𝑏2
0/4𝑐0) , isto é , 𝑧1 é contı́nua para 𝑎 = 𝑏2

0/4𝑐0 . (7)

Novamente do curso de Cálculo de uma variável real a valores em R, sabemos que as funções
−𝑏0

/
2𝑎 e

√︃
4𝑎𝑐0 − 𝑏2

0

/
2𝑎 são contı́nuas para 𝑎 > 𝑏2

0/4𝑐0. Pelo Corolário 2.1,

𝑧1 é contı́nua para 𝑎 > 𝑏2
0/4𝑐0 . (8)

De (4), (7) e (8) segue que 𝑧1 é contı́nua em R∗.

A prova da continuidade de 𝑧2 em R∗ é similar à de 𝑧1.

• São também contı́nuas as 𝑧 𝑗 : R∗ → R2, 𝑗 = 1, 2, nos modelos M[(𝑏0 < 0, 𝑐0 > 0)],
M[(𝑏0 > 0, 𝑐0 < 0)], M[(𝑏0 < 0, 𝑐0 < 0)], M[(𝑏0 = 0, 𝑐0 > 0)], M[(𝑏0 = 0, 𝑐0 < 0)],
M[(𝑏0 > 0, 𝑐0 = 0)], M[(𝑏0 < 0, 𝑐0 = 0)] e M[(𝑏0 = 0, 𝑐0 = 0)] .

a2) Segundo caso

• M[(𝑎0 > 0, 𝑐0 > 0)]
A primeira raiz é a função 𝑧1 : R → R2 dada por

𝑧1(𝑏) =



((
−𝑏 +

√︁
𝑏2 − 4𝑎0𝑐0

) /
2𝑎0, 0

)
para 𝑏 < −2√𝑎0𝑐0 ou 𝑏 > 2√𝑎0𝑐0(√︁

𝑐0/𝑎0, 0
)

para 𝑏 = −2√𝑎0𝑐0(
−
√︁
𝑐0/𝑎0, 0

)
para 𝑏 = 2√𝑎0𝑐0(

−𝑏
/

2𝑎0,
√︁

4𝑎0𝑐0 − 𝑏2
/

2𝑎0

)
para − 2√𝑎0𝑐0 < 𝑏 < 2√𝑎0𝑐0 .

(9)

(
−𝑏 +

√︁
𝑏2 − 4𝑎0𝑐0

) /
2𝑎0 e 0 são contı́nuas para 𝑏 < −2√𝑎0𝑐0. Pelo Corolário 2.1,

𝑧1 é contı́nua para 𝑏 < −2
√
𝑎0𝑐0 . (10)
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Temos

lim
𝑏→−2√𝑎0𝑐0

−

(
−𝑏 +

√︁
𝑏2 − 4𝑎0𝑐0

2𝑎0
, 0

)
=

(√︂
𝑐0
𝑎0

, 0
)
= lim

𝑏→−2√𝑎0𝑐0
+

(
− 𝑏

2𝑎0
,

√︁
4𝑎0𝑐0 − 𝑏2

2𝑎0

)
. (11)

Isto é, lim
𝑏→−2√𝑎0𝑐0

𝑧1(𝑏) = 𝑧1(−2
√
𝑎0𝑐0) , ou seja , 𝑧1 é contı́nua para 𝑏 = −2

√
𝑎0𝑐0 . (12)

−𝑏/2𝑎0 e
√︁

4𝑎0𝑐0 − 𝑏2
/

2𝑎0 são contı́nuas para −2√𝑎0𝑐0 < 𝑏 < 2√𝑎0𝑐0. Pelo Corolário 2.1,

𝑧1 é contı́nua para − 2
√
𝑎0𝑐0 < 𝑏 < 2

√
𝑎0𝑐0 . (13)

Também temos

lim
𝑏→2√𝑎0𝑐0

+

(
−𝑏 +

√︁
𝑏2 − 4𝑎0𝑐0

2𝑎0
, 0

)
=

(
−
√︂

𝑐0
𝑏0

, 0
)
= lim

𝑏→2√𝑎0𝑐0
−

(
− 𝑏

2𝑎0
,

√︁
4𝑎0𝑐0 − 𝑏2

2𝑎0

)
. (14)

Isto é , lim
𝑏→2√𝑎0𝑐0

𝑧1(𝑏) = 𝑧1(2
√
𝑎0𝑐0) , ou seja , 𝑧1 é contı́nua para 𝑏 = 2

√
𝑎0𝑐0 . (15)

Analogamente ao que foi feito para 𝑏 < −2√𝑎0𝑐0 decorre que

𝑧1 é contı́nua para 𝑏 > 2
√
𝑎0𝑐0 . (16)

De (10) a (16) segue que 𝑧1 é contı́nua em R.

A prova da continuidade de 𝑧2 em R é similar à de 𝑧1.

• São também contı́nuas as 𝑧 𝑗 : R → R2, 𝑗 = 1, 2, nos modelos M[(𝑎0 < 0, 𝑐0 < 0)],
M[(𝑎0 > 0, 𝑐0 < 0)], M[(𝑎0 < 0, 𝑐0 > 0)], M[(𝑎0 > 0, 𝑐0 = 0)] e M[(𝑎0 < 0, 𝑐0 = 0)] .

a3) Terceiro caso

• M[(𝑎0 > 0, 𝑏0 > 0)]
A primeira raiz é a função 𝑧1 : R → R2 dada por

𝑧1(𝑐) =


((
−𝑏0 +

√︃
𝑏2

0 − 4𝑎0𝑐
) /

2𝑎0, 0
)

para 𝑐 < 𝑏2
0/4𝑎0

(−𝑏0/2𝑎0, 0) para 𝑐 = 𝑏2
0/4𝑎0(

−𝑏0

/
2𝑎0,

√︃
4𝑎0𝑐 − 𝑏2

0

/
2𝑎0

)
para 𝑐 > 𝑏2

0/4𝑎0 .

(17)

(
−𝑏0 +

√︃
𝑏2

0 − 4𝑎0𝑐
) /

2𝑎0 e 0 são contı́nuas para 𝑐 < 𝑏2
0/4𝑎0. Pelo Corolário 2.1,

𝑧1 é contı́nua para 𝑐 < 𝑏2
0/4𝑎0 . (18)

Temos

lim
𝑐→

𝑏2
0

4𝑎0

−

©­­«
−𝑏0 +

√︃
𝑏2

0 − 4𝑎0𝑐

2𝑎0
, 0

ª®®¬ =

(
− 𝑏0

2𝑎0
, 0

)
= lim

𝑐→
𝑏2

0
4𝑎0

+

©­­«−
𝑏0

2𝑎0
,

√︃
4𝑎0𝑐 − 𝑏2

0

2𝑎0

ª®®¬ . (19)
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Isto é , lim
𝑐→

𝑏2
0

4𝑎0

𝑧1(𝑐) = 𝑧1(𝑏2
0/4𝑎0) , ou seja , 𝑧1 é contı́nua para 𝑐 = 𝑏2

0/4𝑎0 . (20)

−𝑏0/2𝑎0 e
√︃

4𝑎0𝑐 − 𝑏2
0

/
2𝑎0 são contı́nuas para 𝑐 > 𝑏2

0/4𝑎0. Pelo Corolário 2.1,

𝑧1 é contı́nua para 𝑐 > 𝑏2
0/4𝑎0 . (21)

De (18), (20) e (21) segue que 𝑧1 é contı́nua em R.

A prova da continuidade de 𝑧2 em R é similar à de 𝑧1.

• São também contı́nuas as 𝑧 𝑗 : R → R2, 𝑗 = 1, 2, nos modelos M[(𝑎0 > 0, 𝑏0 < 0)],
M[(𝑎0 < 0, 𝑏0 < 0)], M[(𝑎0 < 0, 𝑏0 > 0)], M[(𝑎0 > 0, 𝑏0 = 0)] e M[(𝑎0 < 0, 𝑏0 = 0)] .

Há um resultado que diz que as raı́zes de um polinômio dependem continuamente dos seus
coeficientes. Mais precisamente tem-se o

Teorema 6.3 Sejam 𝑝(𝑧) = 𝑎0𝑧
𝑚 + 𝑎1𝑧

𝑚−1 + · · · + 𝑎𝑚 um polinômio complexo, 𝑎 ∈ C
uma raiz de 𝑝 com multiplicidade 𝑘 e 𝐷 um disco de centro 𝑎 e raio 𝜖 , não contendo outra
raiz de 𝑝. Existe 𝛿 > 0 tal que se 𝑞(𝑧) = 𝑏0𝑧

𝑚 + 𝑏1𝑧
𝑚−1 + · · · + 𝑏𝑚 é qualquer polinômio

satisfazendo |𝑏0 − 𝑎0 | < 𝛿, . . . , |𝑏𝑚 − 𝑎𝑚 | < 𝛿 então 𝑞 possui 𝑘 raı́zes no disco 𝐷 (cada
uma delas sendo contada de acordo com sua multiplicidade). (Lima, 2000, p. 232)

b) Diferenciabilidade

Toda raiz simples de um polinômio é uma função infinitamente diferenciável (classe 𝐶∞) dos
coeficientes desse polinômio. Mais precisamente tem-se o

Teorema 6.4 Para cada 𝑎 = (𝑎0, . . . , 𝑎𝑚) ∈ C𝑚+1 = R2𝑚+2, indique com 𝑝𝑎 o po-
linômio complexo 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑚𝑧

𝑚. Se 𝑧0 é uma raiz simples do polinômio
𝑝𝑎, existem bolas abertas 𝐵 = 𝐵(𝑎, 𝜖) em C𝑚+1 e 𝐷 = 𝐷 (𝑧0, 𝛿) em C tais que, para todo
𝑏 ∈ 𝐵, o polinômio 𝑝𝑏 tem uma única raiz 𝑧 = 𝑧(𝑏) em 𝐷, a qual é simples, e a aplicação
𝐵 → R2, definida por 𝑏 ↦→ 𝑧(𝑏), é de classe 𝐶∞. (Lima, 2000, p. 343)

Falando por alto, em particular as raı́zes simples de 𝑓 (𝑧) = 𝑐 + 𝑏𝑧 + 𝑎𝑧2, 𝑎 ∈ R∗, 𝑏 ∈ R, 𝑐 ∈ R,
são funções 𝐶∞ dos seus coeficientes; em particular o são se fixados dois dos três coeficientes reais.

Não obstante, com exceção da raiz dupla 𝑧1 = 𝑧2 = 0 ∈ 𝐶∞(R∗) no modelo M
[ (
𝑏0 = 0 , 𝑐0 = 0

) ]
,

as raı́zes duplas nos modelos M[(𝑏0 > 0 , 𝑐0 > 0)],M[(𝑏0 < 0 , 𝑐0 > 0)], M[(𝑏0 > 0 , 𝑐0 < 0)],
M[(𝑏0 < 0 , 𝑐0 < 0)], M[(𝑎0 > 0 , 𝑐0 > 0)], M[(𝑎0 < 0 , 𝑐0 < 0)], M[(𝑎0 > 0 , 𝑐0 = 0)],
M[(𝑎0 < 0 , 𝑐0 = 0)], M[(𝑎0 > 0 , 𝑏0 > 0)], M[(𝑎0 > 0 , 𝑏0 < 0)], M[(𝑎0 < 0 , 𝑏0 < 0)],
M[(𝑎0 < 0 , 𝑏0 > 0)], M[(𝑎0 > 0 , 𝑏0 = 0)] e M[(𝑎0 < 0 , 𝑏0 = 0)] não são diferenciáveis.

Provemos que a raiz dupla no modelo M[(𝑏0 > 0 , 𝑐0 > 0)] não é diferenciável em 𝑎 = 𝑏2
0/4𝑐0 .

De (3) temos

𝑧1(𝑎) − 𝑧1(𝑏2
0/4𝑐0)

𝑎 − 𝑏2
0/4𝑐0

=
©­­«

4𝑐0

4𝑐0𝑎 − 𝑏2
0


−𝑏0 +

√︃
𝑏2

0 − 4𝑎𝑐0

2𝑎
+ 2𝑐0

𝑏0

 , 0︸︷︷︸
𝐴(𝑎)

ª®®¬ para 0 < 𝑎 < 𝑏2
0/4𝑐0

(22)
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e
𝑧1(𝑎) − 𝑧1(𝑏2

0/4𝑐0)
𝑎 − 𝑏2

0/4𝑐0
=

©­­­­­­­­«
4𝑐0

4𝑐0𝑎 − 𝑏2
0

[
−𝑏0
2𝑎

+ 2𝑐0
𝑏0

]
,

2𝑐0

𝑎

√︃
4𝑎𝑐0 − 𝑏2

0︸            ︷︷            ︸
𝐵(𝑎)

ª®®®®®®®®¬
para 𝑎 > 𝑏2

0/4𝑐0 . (23)

Assim,
lim

𝑎→
𝑏2

0
4𝑐0

− 𝐴(𝑎) = 0 e lim
𝑎→

𝑏2
0

4𝑐0

+
𝐵(𝑎) = lim

𝑎→
𝑏2

0
4𝑐0

+

2𝑐0

𝑎

√︃
4𝑎𝑐0 − 𝑏2

0

= +∞ . (24)

Daı́, a componente 𝑦 de 𝑧1 não é diferenciável em 𝑎 = 𝑏2
0/4𝑐0 , logo 𝑧1 não é diferenciável em

𝑎 = 𝑏2
0/4𝑐0 . Analogamente, 𝑧2 não é diferenciável em 𝑎 = 𝑏2

0/4𝑐0 . Portanto, a raiz dupla não é
diferenciável em 𝑎 = 𝑏2

0/4𝑐0 .

Provemos que a raiz dupla no modelo M[(𝑎0 > 0 , 𝑐0 > 0)] não é diferenciável em 𝑏 = 2√𝑎0𝑐0 .
De (9) temos

(𝑧1)𝑦 (𝑏) − (𝑧1)𝑦 (2
√
𝑎0𝑐0)

𝑏 − 2√𝑎0𝑐0
= − 1

2𝑎0

√︁
2√𝑎0𝑐0 + 𝑏√︁
2√𝑎0𝑐0 − 𝑏

para − 2
√
𝑎0𝑐0 < 𝑏 < 2

√
𝑎0𝑐0 . (25)

Assim,

lim
𝑏→2√𝑎0𝑐0

− −
1

2𝑎0

√︁
2√𝑎0𝑐0 + 𝑏√︁
2√𝑎0𝑐0 − 𝑏

= −∞ (26)

e a componente 𝑦 de 𝑧1 não é diferenciável em 𝑏 = 2√𝑎0𝑐0. Logo, 𝑧1 não é diferenciável em
𝑏 = 2√𝑎0𝑐0. Analogamente, a componente 𝑦 de 𝑧2 não é diferenciável em 𝑏 = 2√𝑎0𝑐0. Daı́ 𝑧2
não é diferenciável em 𝑏 = 2√𝑎0𝑐0. Portanto, a raiz dupla não é diferenciável em 𝑏 = 2√𝑎0𝑐0. De
maneira similar, prova-se que a raiz dupla não é diferenciável em 𝑏 = −2√𝑎0𝑐0.

Provemos que a raiz dupla no modelo M[(𝑎0 > 0 , 𝑏0 > 0)] não é diferenciável em 𝑐 = 𝑏2
0/4𝑎0 .

De (17) temos

(𝑧1)𝑦 (𝑐) − (𝑧1)𝑦 (𝑏2
0/4𝑎0)

𝑐 − 𝑏2
0/4𝑎0

=
2√︃

4𝑎0𝑐 − 𝑏2
0

para 𝑐 > 𝑏2
0/4𝑎0 . (27)

Assim,
lim

𝑐→
𝑏2

0
4𝑎0

+

2√︃
4𝑎0𝑐 − 𝑏2

0

= +∞ (28)

e a componente 𝑦 de 𝑧1 não é diferenciável em 𝑐 = 𝑏2
0/4𝑎0. Logo, 𝑧1 não é diferenciável em

𝑐 = 𝑏2
0/4𝑎0. Analogamente, a componente 𝑦 de 𝑧2 não é diferenciável em 𝑐 = 𝑏2

0/4𝑎0. Daı́ 𝑧2 não é
diferenciável em 𝑐 = 𝑏2

0/4𝑎0. Portanto, a raiz dupla não é diferenciável em 𝑐 = 𝑏2
0/4𝑎0.
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Provemos que a raiz dupla no modelo M[(𝑎0 > 0 , 𝑐0 = 0)] não é diferenciável em 𝑏 = 0 .
A primeira raiz é a função 𝑧1 : R → R2 dada por

𝑧1(𝑏) =


(−𝑏/𝑎0, 0) para 𝑏 < 0
(0, 0) para 𝑏 = 0
(0, 0) para 𝑏 > 0 . Temos

(29)

(𝑧1)𝑥 (𝑏) − (𝑧1)𝑥 (0)
𝑏 − 0

=

{
−1/𝑎0 para 𝑏 < 0
0 para 𝑏 > 0 . Assim, (30)

lim
𝑏→0−

(𝑧1)𝑥 (𝑏) − (𝑧1)𝑥 (0)
𝑏 − 0

= −1/𝑎0 e lim
𝑏→0+

(𝑧1)𝑥 (𝑏) − (𝑧1)𝑥 (0)
𝑏 − 0

= 0 , (31)

e a componente 𝑥 de 𝑧1 não é diferenciável em 𝑏 = 0. Logo, 𝑧1 não é diferenciável em 𝑏 = 0.
Analogamente, a componente 𝑥 de 𝑧2 não é diferenciável em 𝑏 = 0. Daı́ 𝑧2 não é diferenciável em
𝑏 = 0. Portanto, a raiz dupla não é diferenciável em 𝑏 = 0.

Provemos que a raiz dupla no modelo M[(𝑎0 > 0 , 𝑏0 = 0)] não é diferenciável em 𝑐 = 0 .
A primeira raiz é a função 𝑧1 : R → R2 dada por

𝑧1(𝑐) =


(√︁

−𝑐/𝑎0 , 0
)

para 𝑐 < 0
(0, 0) para 𝑐 = 0(
0,

√︁
𝑐/𝑎0

)
para 𝑐 > 0 . Temos

(32)

(𝑧1)𝑦 (𝑐) − (𝑧1)𝑦 (0)
𝑐 − 0

=

{
0 para 𝑐 < 0√︃

1
𝑎0𝑐

para 𝑐 > 0 . Assim, (33)

lim
𝑐→0−

(𝑧1)𝑦 (𝑐) − (𝑧1)𝑦 (0)
𝑐 − 0

= 0 e lim
𝑐→0+

(𝑧1)𝑦 (𝑐) − (𝑧1)𝑦 (0)
𝑐 − 0

= +∞ , (34)

e a componente 𝑦 de 𝑧1 não é diferenciável em 𝑐 = 0. Logo, 𝑧1 não é diferenciável em 𝑐 = 0.
Analogamente, a componente 𝑦 de 𝑧2 não é diferenciável em 𝑐 = 0. Daı́ 𝑧2 não é diferenciável em
𝑐 = 0. Portanto, a raiz dupla não é diferenciável em 𝑐 = 0.

6.5 Um pouco mais de explanação
Dado que Yamaoka (2023) e este artigo têm também caracteres instrucionais, é pertinente

acrescentarmos a referência bibliográfica que contém a teoria que embasa o item 7. de Yamaoka
(2023, p. 59), ficando assim:

“7. Em cada subcaso, seja𝐺1 ⊂ R2 o conjunto dos pontos do caminho da 1ª raiz em R2

e 𝐺2 ⊂ R2 o conjunto dos pontos do caminho da 2ª raiz em R2. O(s) ponto(s) aderente(s)”
[Definição 2.7] “comum(ns) a 𝐺1 e a 𝐺2 é (são):... .Conforme visto acima..., para cada
subcaso existe pelo menos um ponto P...tal que toda bola aberta em R2 com centro P contém
algum ponto de 𝐺1 e de 𝐺2, ou seja, P é um ponto aderente a 𝐺1 e a 𝐺2” [“A fim de que
o ponto 𝑎 seja aderente ao conjunto 𝑋 , é necessário e suficiente que toda bola aberta de
centro 𝑎 contenha algum ponto de 𝑋”(Lima, 2000, p. 38).] “,ou seja, 𝑃 ∈ 𝐺1 ∩ 𝐺2, onde
𝐺 𝑗 denota o conjunto dos pontos aderentes a 𝐺 𝑗 , 𝑗 = 1, 2” [Definição 2.8] “,o que implica
que a distância entre 𝐺1 e 𝐺2” (Lima, 2000, p. 49) “é 𝑑 (𝐺1, 𝐺2) = 𝑑 (𝐺1, 𝐺2)” (Lima,
2000, p. 50) “= 0”.
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7 Conclusões
Em cada tabela: a 1ª coluna representa o Estilo; a 2ª, o Modelo; a 3ª, o Número de componentes

conexas de cada raiz por Modelo; a 4ª, o Molde; a 5ª, o Número de componentes conexas do Molde.

Tabela 1 - Primeiro caso
Estilo Modelo Nº c.c./raiz/Model Molde Nº c.c. Molde

. M[(𝑏0 > 0, 𝑐0 > 0)] . MOL[(𝑏0 > 0, 𝑐0 > 0),
1 . M[(𝑏0 < 0, 𝑐0 > 0)] 1ª raiz:2 ; 2ª raiz:2 (𝑏0 < 0, 𝑐0 > 0), 3

. M[(𝑏0 > 0, 𝑐0 < 0)] (𝑏0 > 0, 𝑐0 < 0),

. M[(𝑏0 < 0, 𝑐0 < 0)] (𝑏0 < 0, 𝑐0 < 0)]
2 . M[(𝑏0 = 0, 𝑐0 > 0)] 1ª raiz:2 ; 2ª raiz:2 . MOL[(𝑏0 = 0, 𝑐0 > 0), 4

. M[(𝑏0 = 0, 𝑐0 < 0)] (𝑏0 = 0, 𝑐0 < 0)]
3 . M[(𝑏0 > 0, 𝑐0 = 0)] 1ª raiz:1 ; 2ª raiz:2 . MOL[(𝑏0 > 0, 𝑐0 = 0), 1

. M[(𝑏0 < 0, 𝑐0 = 0)] 1ª raiz:2 ; 2ª raiz:1 (𝑏0 < 0, 𝑐0 = 0)]
4 . M[(𝑏0 = 0, 𝑐0 = 0)] 1ª raiz:1 ; 2ª raiz:1 . MOL[(𝑏0 = 0, 𝑐0 = 0)] 1

Fonte: elaborada pelo autor

Tabela 2 - Segundo caso

Estilo Modelo Nº c.c./raiz/Model Molde Nº c.c. Molde
1 . M[(𝑎0 > 0, 𝑐0 > 0)] 1ª raiz:1 ; 2ª raiz:1 . MOL[(𝑎0 > 0, 𝑐0 > 0), 1

. M[(𝑎0 < 0, 𝑐0 < 0)] (𝑎0 < 0, 𝑐0 < 0)]
2 . M[(𝑎0 > 0, 𝑐0 < 0)] 1ª raiz:1 ; 2ª raiz:1 . MOL[(𝑎0 > 0, 𝑐0 < 0), 2

. M[(𝑎0 < 0, 𝑐0 > 0)] (𝑎0 < 0, 𝑐0 > 0)]
3 . M[(𝑎0 > 0, 𝑐0 = 0)] 1ª raiz:1 ; 2ª raiz:1 . MOL[(𝑎0 > 0, 𝑐0 = 0), 1

. M[(𝑎0 < 0, 𝑐0 = 0)] (𝑎0 < 0, 𝑐0 = 0)]
Fonte: elaborada pelo autor

Tabela 3 - Terceiro caso
Estilo Modelo Nº c.c./raiz/Model Molde Nº c.c. Molde

. M[(𝑎0 > 0, 𝑏0 > 0)] . MOL[(𝑎0 > 0, 𝑏0 > 0),
1 . M[(𝑎0 > 0, 𝑏0 < 0)] 1ª raiz:1 ; 2ª raiz:1 (𝑎0 > 0, 𝑏0 < 0), 1

. M[(𝑎0 < 0, 𝑏0 < 0)] (𝑎0 < 0, 𝑏0 < 0),

. M[(𝑎0 < 0, 𝑏0 > 0)] (𝑎0 < 0, 𝑏0 > 0)]
2 . M[(𝑎0 > 0, 𝑏0 = 0)] 1ª raiz:1 ; 2ª raiz:1 . MOL[(𝑎0 > 0, 𝑏0 = 0), 1

. M[(𝑎0 < 0, 𝑏0 = 0)] (𝑎0 < 0, 𝑏0 = 0)]
Fonte: elaborada pelo autor

Exceto o Estilo 4 (da Tabela 1 - Primeiro caso), todos os demais Estilos apresentam um número
par de Modelos.

Na 3ª coluna de cada tabela, em cada Estilo a soma do número de componentes conexas da 1ª
raiz é igual à soma do número de componentes conexas da 2ª raiz. Por conseguinte, tem-se:

• na Tabela 1 - Primeiro caso, na 3ª coluna, a soma do número de componentes conexas da 1ª
raiz é igual à soma do número de componentes conexas da 2ª raiz: 16;
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• na Tabela 2 - Segundo caso, na 3ª coluna, a soma do número de componentes conexas da 1ª
raiz é igual à soma do número de componentes conexas da 2ª raiz: 6;

• na Tabela 3 - Terceiro caso, na 3ª coluna, a soma do número de componentes conexas da 1ª
raiz é igual à soma do número de componentes conexas da 2ª raiz: 6.

Portanto, considerando-se as 3ªs colunas das 3 tabelas conjuntamente, a soma do número de com-
ponentes conexas da 1ª raiz é igual à soma do número de componentes conexas da 2ª raiz: 28.

É importante observar que o molde que apresenta o número máximo de componentes conexas,
ou seja, 4 ( = 2 vezes o grau de 𝑓 = 2.2), provém de 𝑓 (𝑧) = 𝑎𝑧2 + 𝑐0, 𝑎 ∈ R∗, 𝑐0 ≠ 0.

Para 𝑓 (𝑧) = 𝑎𝑧2 + 𝑏𝑧1 + 𝑐𝑧0, 𝑎, 𝑏, 𝑐 ∈ R, 𝑎 ≠ 0, temos:

• Nº de Estilos do Primeiro caso = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧2) = 2 + 2 = 4;

• Nº de Estilos do Segundo caso = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧1) = 2 + 1 = 3;

• Nº de Estilos do Terceiro caso = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧0) = 2 + 0 = 2;

onde 𝑔𝑟 ( 𝑓 ) é o grau de 𝑓 e 𝑔𝑟 (𝑧 𝑗 ) é o grau de 𝑧 𝑗 .

Sinteticamente:

Para 𝑓 (𝑧) = 𝐴2𝑧
2 + 𝐴1𝑧

1 + 𝐴0𝑧
0, 𝐴 𝑗 ∈ R, 𝑗 = 0, 1, 2, 𝐴2 ≠ 0, temos

• 𝑁𝐸 (𝐴 𝑗 ) = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧 𝑗 ),
onde 𝑁𝐸 (𝐴2) é o Nº de Estilos do Primeiro caso, isto é, 𝑁𝐸 (𝐴2) = 4;

𝑁𝐸 (𝐴1) é o Nº de Estilos do Segundo caso, isto é, 𝑁𝐸 (𝐴1) = 3;
𝑁𝐸 (𝐴0) é o Nº de Estilos do Terceiro caso, isto é, 𝑁𝐸 (𝐴0) = 2.

Para 𝑓 (𝑧) = 𝐴1𝑧
1 + 𝐴0𝑧

0, 𝐴 𝑗 ∈ R, 𝑗 = 0, 1, 𝐴1 ≠ 0, temos

• 𝑁𝐸 (𝐴 𝑗 ) = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧 𝑗 ), 𝑗 = 0, 1, isto é, 𝑁𝐸 (𝐴1) = 2 , 𝑁𝐸 (𝐴0) = 1 .

Para 𝑓 (𝑧) = 𝐴𝑛𝑧
𝑛 + 𝐴𝑛−1𝑧

𝑛−1 + · · · + 𝐴1𝑧
1 + 𝐴0𝑧

0, 𝐴 𝑗 ∈ R, 𝑗 = 0, . . . , 𝑛, 𝐴𝑛 ≠ 0, temos

• 𝑁𝐸 (𝐴 𝑗 ) = 𝑔𝑟 ( 𝑓 ) + 𝑔𝑟 (𝑧 𝑗 ), 𝑗 = 0, . . . , 𝑛; 𝑛 ≥ 3 ?

Isto é,

• 𝑁𝐸 (𝐴𝑛) = 2𝑛 , 𝑁𝐸 (𝐴𝑛−1) = 2𝑛 − 1 , . . . , 𝑁𝐸 (𝐴0) = 𝑛; 𝑛 ≥ 3 ?

Em Yamaoka (2023) e neste artigo, os caminhos das raı́zes da função quadrática nos proporci-
onaram um passeio pela topologia do espaço euclidiano - aplicações contı́nuas, limites, conjuntos
abertos, conjuntos fechados, distância entre dois conjuntos e conexidade - e pela diferenciabilidade
de um caminho.

Em sı́ntese, de um problema de aproximados 4 milênios cuja semente era resolver equações
quadráticas, ao fixar dois coeficientes reais e variar o coeficiente real remanescente da função
quadrática para determinar os caminhos das duas raı́zes pudemos usufruir de um bom número de
conceitos e de resultados estabelecidos da Análise Clássica para atingir nossos objetivos.
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Um átimo de ludicidade: A Figura 38 (L’atelier de Mathématiques) ilustra o ato de “VES-
TIR”/“despir” o Molde/notação e o de “DESPIR”/“vestir” o Modelo/notação para o Estilo 1 do
Primeiro caso.

Figura 38: (L’atelier de Mathématiques). “VESTIR” o Molde: ornamentá-lo com os eixos 𝑥 e 𝑦, com os caminhos (em
azul e em vermelho; a raiz dupla (−1, 0) permanece em preto) e com os intervalos do coeficiente variável (em verde);
“DESPIR” o Modelo: despi-lo dos eixos 𝑥 e 𝑦, dos caminhos (em azul e em vermelho; a raiz dupla (−1, 0) permanece
em preto) e dos intervalos do coeficiente variável (em verde); “vestir” notação: acrescentar OL,

(
𝑏0 = −2 , 𝑐0 = 1

)
,(

𝑏0 = 2 , 𝑐0 = −1
)

e
(
𝑏0 = −2 , 𝑐0 = −1

)
à notação do Modelo; “despir” notação: retirar OL,

(
𝑏0 = −2 , 𝑐0 = 1

)
,(

𝑏0 = 2 , 𝑐0 = −1
)

e
(
𝑏0 = −2 , 𝑐0 = −1

)
da notação do Molde. L’atelier de Mathématiques permite visualizar:

(a) o nº de componentes conexas de cada raiz (=2) - na Figura referente ao Modelo (à direita);
(b) o nº de componentes conexas do Molde (=3, cada uma aberta e fechada no molde) - na Figura referente ao Molde (à
esquerda);
(c) 𝑑 (𝐺1, 𝐺2) = 0 - na Figura referente ao Modelo (à direita): os pontos aderentes comuns a 𝐺1 e a 𝐺2 são (0, 0) [∉
𝐺1, ∉ 𝐺2] e (−1, 0) [∈ 𝐺1, ∈ 𝐺2] ;
(d) a continuidade das 2 raı́zes em R∗ - na Figura referente ao Modelo (à direita) - provada na pág.21;
(e) a “quina” (−1, 0) - na Figura referente ao Modelo (à direita) - , que acusa a não diferenciabilidade da raiz dupla em
𝑎 = 1, provada na pág.23.

Fonte: elaborada pelo autor

Outro: A Figura 39 (L’atelier de Mathématiques 2) ilustra o ato de “VESTIR”/“despir” o
Molde/notação e o de “DESPIR”/“vestir” o Modelo/notação para o Estilo 1 do Terceiro caso.
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Figura 39: (L’atelier de Mathématiques 2). “VESTIR” o Molde: ornamentá-lo com os eixos 𝑥 e 𝑦, com os caminhos (em
azul e em vermelho; a raiz dupla (−1, 0) permanece em preto) e com os intervalos do coeficiente variável (em verde);
“DESPIR” o Modelo: despi-lo dos eixos 𝑥 e 𝑦, dos caminhos (em azul e em vermelho; a raiz dupla (−1, 0) permanece
em preto) e dos intervalos do coeficiente variável (em verde); “vestir” notação: acrescentar OL,

(
𝑎0 = 1 , 𝑏0 = −2

)
,(

𝑎0 = −1 , 𝑏0 = −2
)

e
(
𝑎0 = −1 , 𝑏0 = 2

)
à notação do Modelo; “despir” notação: retirar OL,

(
𝑎0 = 1 , 𝑏0 = −2

)
,(

𝑎0 = −1 , 𝑏0 = −2
)

e
(
𝑎0 = −1 , 𝑏0 = 2

)
da notação do Molde. L’atelier de Mathématiques 2 permite visualizar:

(a) o nº de componentes conexas de cada raiz (=1) - na Figura referente ao Modelo (à direita);
(b) o nº de componentes conexas do Molde (=1, aberta e fechada no molde) - na Figura referente ao Molde (à esquerda);
(c) 𝑑 (𝐺1, 𝐺2) = 0 - na Figura referente ao Modelo (à direita): o ponto aderente comum a𝐺1 e a𝐺2 é (−1, 0) [∈ 𝐺1, ∈ 𝐺2];
(d) a continuidade das 2 raı́zes em R - na Figura referente ao Modelo (à direita) - provada na pág.22;
(e) a “quina” (−1, 0) - na Figura referente ao Modelo (à direita) - , que acusa a não diferenciabilidade da raiz dupla em
𝑐 = 1, provada na pág.24.

Fonte: elaborada pelo autor
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